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Abstract— The paper presents the application of
certain elements of the single and double layer po-
tential theory to boundary problems of electrostat-
ics. These problems were formulated with the sec-
ond order Fredholm integral equations.
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The presented theory was illustrated with an exam-
ple of three dielectrics with the volume electric load
density. On the basis of the potentiality condition
of the Fredholm operator an energy functional was
constructed using the Weinberg method. There was
given an alternate formulation of the problem based
on the Galerkin method.
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I. INTRODUCTION

The integral equation method based on the single
and double layer potential theory was introduced by
Giunter [2] and extended to the elecro- and magne-
tostatic applications in the Lvov research area by
Tozoni [6]. The current paper educes a second-order
Fredholm system of equations with a weakly singu-
lar nucleus [5], [8] by using a single layer potential
theory. The system describes the density distribu-
tion of secondary sources on the boundary surfaces
of a non-homogeneous system of dielectrics. The
obtained equation system was formulated as two
variational identities in Galerkin sense [1], [4]. By
using the Weinberg’s theory of potentiality opera-
tors [7] there was given an alternative formulation
of the considered electroctatics boundary problem
in the form of an extreme energy functional ques-
tion. The presented variational formulation of the
integral system once as a variational identity in the
Galerkin sense and then as an extreme energy func-
tional question is part of the contemporary math-
ematical modeling of the boundary problems with
distributed parameters. It constitutes a natural ap-
proach for approximation with the boundary finite
element known in the literature as the Boundary
Element Method BEM.
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II. MULTI-LAYER ELECTOSTATICS PROBLEM

Let’s now consider a model boundary problem of
determining the ¢(Q) potential distribution in an
unlimited space R? filled with a system of dielectrics
in which volume electric load densities exist. We
shall consider a case where the outside of the solid
Q, limited with a surface {R3-Q¢} is filled with
a homogeneous dielectric €. Inside the solid 2,
there are contained m solids Q} limited with sur-
faces Sy, and filled with dielectics of permeability €}
each. These dielectrics contain source electric load
of density pi,k = 1,2,...,m. The space between
the solids {Q, — J~, } is filled with a dielectric €.
For such an electrostatic system we will formulate
an appropriate differential boundary problem.

A. Differential boundary problem

(Question 1): For the given densities px©(Q) and
prt(Q) where Q € Qf , Q € Q) C R® and given
dielectric permeabilities £, £} determine the distri-
bution of potential ¢(Q)

Fig. 1. Non-homogeneous system of dielectrics and sources
¢(Q), Qe k=01,2..m

p(z) = (1)
#(Q), Qe R -0}

that fulfills the following system of equations:
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and where on the boundary surfaces S between the
dielectrics €° i €' the boundary conditions are:

¥'Q=¢(Q), Q€S (4)
Ot 0p©
g wafiQ) iy waéQ) —0, QcS, ()

We shall reduce the formulated differantial-
boundary problem to an integral problem by using
the previously introduced potential theory.

B. Integral boundary problem

The single and double layer potential theory is
given mathematically for a homogeneous material
with material parameters equal to one. In or-

Fig. 2.
surface S

Induction scheme for the load on the boundary

Fig. 3.
surface Sa

Induction scheme for the load on the boundary

der to meet the real permeability of the dielectrics
system in the area ; we shall transform the non-
homogeneous system to a homogeneous one.

W {52} — {e°} (6)

This transformation can be performed according

Qe {}, k=012, Mo t?{‘? different criteria of equivalence for the real

and transformed system. Once by saving the elec-
tric field intensity vector (E = -V ®¢ = idem)
and then by saving the electric induction vector
(D = idem) in the areas where the dielectic has
been shifted.

E=-V®¢=idem (7

D = idem (8)

If we perform the medium transformation according
to (7) then there will appear secondary sources on
the boundary surfaces S;. These sources will have
the single layer potential density ox(Q),Q € Sk.
When shifting the dielectrics according to (8) then
there will appear double layer surface potential den-
sities 7 (Q). The original volume sources are trans-
formed according to the following rule:

€

i (Q) = €ph(Q) = P(Q) = Tk Q) (9)

Potential distribution in a homogeneous electro-
static system after transformation (6) is expressed
in dielectric o, by the solution of the differential-
boundary problem (Question 1 - (2)-(5)). This so-
lution is in turn expressed by the single layer po-
tential 01,(Q), reduced to volume potentials p®, (Q)
and it receives the form:

1 M M.
W@ = o { f 20Masy, + f 20, Lo
47T€ Sl TQMI 52 TQMZ
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+—{/ Mval+/ Mdv} (10)
47T€€ N TQNl Qe TQN

For the potential distribution (10) to be a solution
of the differential problem (Question 1) it has to
conform on the boundary surfaces Sj to condition
(5). This condition is equivalent in our case to the
following system:

dpt Iy~
€° wagl) —€ 9085?1) =0, @ eSS (11)
€ 8(,0"'(522) — € 00~ EQQ) =0, Q2€ 5 (12)
on oni

On the basis of the theorem of single layer poten-
tial normal derivative jump in the boundary surface
points, we differentiate (10) in Q7 € S; and Q2 € So
and we obtain:

590+(Q1)_01(Q1) 1
on 2 _471'68{%910-
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Similarly, by differentiating the potential (10) in
the direction normal to the inside of surface S; we
obtain:

dp™(Q1)
on
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It should be stressed that the integral formula (10)
describes the potential distribution in the whole

(N>) S5l
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After substituting the obtained direction deriva-
tives to (11) and (12) and after performing appro-
priate transformations we obtain a system of two
Fredholm integral equations of the second kind.

S F ) B g,
dme 51 I\( 1) — M /Cll (@1 M1)o (M1)dSwr, —

=AM ¢ Ki2(Q1M2)o2(Mz2)dSw, = f1(Q1) (17)
S
02(Q2) — : Ko1(Q2M)o1 (M1)dSw, —
=2 ) Ka2(Q2Ma2)o2(M2)dSn, = f2(Q2) (18)
where IC;;(Q;Mj), i,j=1,2 is the nucleus of the Fred-

holm’s integral operator.

cos
space R3 filled with dielectic €® as a result of the K11(Q1My) = ]{ #ds (19)
performed medium transformation. By determin- Su 4T TQlMl
ing this time the normal derivatives of potential
(10) in points on surface Q2 € Sz we obtain: coS
Ki2(Q1 Ms) = 74 %dsﬂb (20)
s M
99T (Q2) _02(Q2) 1 €S Y@, My Pk
on 9ee drec 01(Mz)—5———dSn,+
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Similarly by differentiating the potential (10) in the
direction normal to the inside of surface Sy we ob-
tain:

dp(Q2)
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The parameter \;, k=1,2 is expressed by the di-
electrics’ permeability:
€1 — €e

AM=——, A=
! €1 + €e 2

€2 — €e
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The right sides of (17), (18) are the source functions
expressed by the original volume load densities.

[1(@Q1) = /\1/ (NﬂwaQlN1 dVn, +
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The educed system (17), (18) is a Fredholm sys-
tem of the second kind with a weakly singular nu-
cleus. It has to be noted that for numerical rea-
sons its spectral characteristics are especially im-
portant. The integral equations theory implies that
the value of parameter A = 1 is the eigenvalue of the
Fredholm’s nucleus. In our case it happens when
the permeabilities ¢; and ez are many times higher
than the permeability e.. If then (¢; — oo) and
(e2 — 00), we have:

. €1 — €
€1—00 {61 —|—ee}

A= lim Ao = lim
A1 and Aq receive the eigenvalues of nucleuses from
(17), (18). This causes problems associated with
stability and ambiguity of the system’s numerical
solution. Such a case necessitates regularization of
the nucleuses in order to shift the eigenvalue spec-
trum.

III. GENERALIZED FORMULATION OF THE
INTEGRAL PROBLEM

We shall formulate the system (17), (18) in a gen-
eralized form in the Galerkin sense. This leads to a
system of two variational identities and a a system
of two energy potentials in the Wainberg sense.

A. Galerkin’s variational identities

In a normalized space of functions integrable in
square, equipped with a scalar product (u,v) and
a norm || u || where u,v € L2(Sg, ), we shall intro-
duce a bi-linear form a(o,v) : L?(Sk) x L*(Sk) —
R! and a linear form [(v) : L?(Sy) — R!, where
v(z) € L*(Sk) is a test function. For the system
(17), (18) these forms have the form of surface in-
tegrals.

<o, >= fi Qn(@QiSe,  (21)
< 02,03 >= jfs (Qn(@)iSe, (9
Li(v) =< fi,v1 >= a fi(Q1)v1(Q1)dSq, (29)
la(v2) =< f2,v2 >= a f1(Q1)v1(Q1)dSq, (30)

In accordance, the bi-linear forms a;; (o4, v;) i,j=1,2
are expressed with double integrals.

a1 (o1,v1) =< A\ Ki1(o1) 5, v1 >=

%)\1‘7{ 0'1 M1
S1 S1

cos Yo, M,
COSUQIML 16, 01 (Q1)dSg, (31)
Q1M1

{62165} 1(26)
2 €2 €e %)\2‘7{ 0_2
Sz S2

a19(o2,v1) =< A Kig(o2) 5, v1 >=
com/)QlM2
A1 @ oo(My) —5——=2dSn,v1(Q1)dSq, (32)
S1 Sa 1M2
as1(o1,v2) =< Ay Kai1(01) ;, va >=
com/)QQMl
A2 @ o1(My)——5—2—=dSn,v2(Q1)dSq, (33)
So S1 Q2M1
a2, v2) =< Ay Kaz(02) 5, va >=

COS¢Q2M2 dSM2U2(Q2)dSQ2 (34)
Q2M2

The system expressed by the integral forms (27)-
(34) receives the form of two variational identities:

<o01,v1 > —all(Ul,Ul) — a12(02,711) = l(vl)
(35)
< 092,V2 > —0,21(0'1,U2) — a22(02, UQ) = 1(02)

For the matrix representation of the system of iden-
tities (35) we shall now give a theorem of solution

existence and unambiguouty. By introducing vec-
tors

v l1(v
o= | T a= | = | ) | ee)
02 (%) la(v2)
o1,v1) — ai1(o1,v1) — ara(og,v
i, ) = (o1,v1) 11(01,01) 12(02, v1) (37)
(0'271)2)_a21(0'1;712)_a22(0'2;712)
we obtain a solution
d(o,v) = I{v), \1(0) € V' (Sk) (38)

For the variational identity (38) we will formulate
a multi-surface boundary problem. .
(Question 2): For the given linear form [(¥) €
V' (Sk) and any test vector 7 € L2(Sy) determine
the secondary sources vector o € L?(Sy) that ful-
fills the variational identity (38). The bi-linear form
d(o,7) and linear form [(7) fulfill necessary and
satisfactory conditions for the existence and unam-
biguouty of the equation’s solution, the variational
identity in the Galerkin sense (38).

B. Wainberg’s potentials

Now we shall write the integral equation system
(17)-(18) in the operator form.

Plo)=f

where the operator P and the righ side f have the
form:

(39)

P=I-AK(Q,M) (40)
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f= (41)

f2

The identity operator I and X are a second-order
matrices,

(42)
01 0 X

And K(Q, M) is the Fredholm nucleus operator
matrix IC;;(Qi, M), 1,j=1,2 expressed by (19)-(22).

K11(Q1My)
Ka21(Q1Ma)

Ki12(Q1Mz)
Ka2(Q2Mz)

K(Q, M) = (43)

The operator equation (38) obtains the following
form in the matrix representation.

{[-ak@Mmlo@=r@ (9
By using the potentiality operators theory [7] we
shall formulate the integral equation system (17),
(18) as two electostatic energy field functionals, of
the energy stored on the boundary surfaces Sy ex-
pressed by the surface densities o, and the original
sources energy with density pr. We shall use the
following theorem:

(Theorem 1): If the operator P : (L%*(Sy) x
L?(Sk)) — L?(Sy) is differentiable in the Gateaux
derivative sense in every point of o € L?(Sy), i.e.
it has a derivative dP(o;u) in point ¢ in direction
u, where,

dP(o;u)

= lim % {P(o+tu) —P(o)} =

d
= E’P(O' + tu) |t:0

(45)
and the functional < P(o;u),v > is continuous in
point o € L?(Sk) then the necessary and satisfac-
tory condition for the operator P to be a potential
operator is:

< P(o;u),v >=<P(o;v),u > (46)

This means that the bi-linear functional <
P(o;u),v > in points u and v has to be symmetrical
for every density o € L?(Sy).

(Theorem 2): If the operator P : (L%(Sk) x
L?(Sk)) — L?(Sy) is continuous and potential then
there exists a functional F (o) such that its gradient
is equal to this operator in this point.

P(o) = grad F(o) =V @ F(o) (47)
This function is given by:
1
Flo) = / < Plto) — f,o > dt (48)
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We shall verify that the operator (40) fulfills the
necessary and satisfactory condition for potential-
ity. We shall determine the direction derivative (45)
and we will check the symmetry condition (46).

dP(oyil) = %P(a +tu) J1—o= T — MC(Q, M) (49)
0P (0:7) = 2P0 + 1) [io= 7 — AK(Q, M)7 (50)

dt

< il = AK(Q, M)ii, # >=< 7 — MC(Q, M), i > (51)

It is easy to state that the the symmetry condition
is fulfilled and thus the operator P is potential. The
potential (48) obtains the following form through
integration:

1
.7-'(0):/ <Plto)—fio>dt =
1 —
=/ <tP(o)—f,o>dt=

1 1
:/ <t7?(o—),o>dt—/ < fio>dt=

:£<P(a)7o>—<f,o>

: (52)

After substituting the vectors (36), (41) and the
operator (40) to (52) we obtain a direct form of
the potential F (o) whose elements are expressed by
appropriate scalar products in the space L?(Sy) x
L2(Sk), <>

1
Flo) = §(< 01,1 > + < 02,2 >)—

1
—§(< A1 ’Cll(ol) , v >+ < A\ /Clg(og) , U1 >+

+ < A1 Kia(oz) , v1 >+ < A\ Kig(o12) , v2 >)—

—<f1,’U1>—<f2,1}2> (53)
And in the integral form:

Flo) = % {7{% 01(Q1)v1(Q1)dSq, +

33 o2(Qu)nlQe)dSo, | -

74)\17{ o1(My)
Sy S1

COSVQM 16 1y (Q1)dSe, +
Q1M1



€O @Mz g, 0y (Q) S, +
Q1M2

]{)\1?{ o2 (M>)
51 Js,
%AQ?{ o1(Mn)
Sy Sy

74)\27{ o1(My)
s, Jsi

COSV@M 15, (Q1)dS +
Qz My

COSYQM 1 1 (Q1)dS e, }
Q2 My

(4]

(3]

(6]

(7]

(8]

f1(Q1)v1(Q1)dSq, —j{ f2(Q2)v2(Q2)dSq, (54)
S1 S

The original source functions f1(Q1) i f2(Q2) are
defined by (24), (25). We shall formulate a varia-
tional problem for the functional (53) of obtaining
the extreme of ther functional F.

(Question 3): In the set of acceptable density distri-
butions in the single layer v € Uyq(Sk) C L?(Sk) x
L?(Sk) determine the density o which gives the
lower boundary of the functional (53).

F(o) = inf F(¥)

7€Uqq

(55)

If the functional (53) is weakly pulled from the
bottom and is also radially non-convergent then it
reaches a global minimum in the definitive space. It
can also be shown that the point (o = (01, 02)) that
gives the global minimum to the functional F (o) is
a solution of (17), (18). Also this solution is equiv-
alent to the solution of the variational identities in
the Galerkin sense (Question 2).

IV. FINAL REMARKS

The proposed method of integral equations based
on the single and double layer potentials is a univer-
sal method of formulating boundary algorithms for
non-homogeneous, anizotropic and non-linear sys-
tems. It allows for mathematical modeling leading
to the boundary element method BEM for systems
with unlimited boundary surfaces. In case when
the material medium is non-homogeneous with high
disproportions of permeability values, the equation
system needs regularization which shifts the spec-
trum of the system so that the \; parameter is not
equal to one.

The case where the )\ parameter is equal or close
to one, is associated with ambiguity of the integral
system solution and with numerical instability of
algorithms based on the boundary finite element
approximation.
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