
International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

 84

 Abstract — The paper presents an approach towards
teaching of intelligent building design combined with
component programming of software modules for
intelligent building control. This approach is supported
by a laboratory simulator and a component-based
environment. The simulator is composed of several EIB
modules and a house control model. The component
environment consists of low-level components for
intelligent bus communication. The teaching approach
uses the simulator to teach programming of intelligent
building modules and construction of external software
control components.

I. INTRODUCTION
NTELLIGENT buildings are most probably the
future of building construction. The “intelligence”
of such building lies in their electrical installations.

Such installations allow for controlling of all the
electrical appliances in a very flexible way. An
example of such an intelligent system is the EIB
(European Installation Bus) [2,3,4]. The EIB systems
consist of distributed modules that are connected
through a bus cable (Fig. 1). The sensor modules
(bottom ones on Fig. 1) need no supply of high
voltage. Only the actuator modules that actually switch
the appliances need power supply.

The EIB modules are very flexible, but this
flexibility means also that the configuration of such a
module is complex. Every module is a
microprocessor-based device that can have an
appropriate program loaded and requires a quite
complicated process of parameterization. The modules
are connected to the EIB bus line through an
intelligent transmission module (Fig. 2). This module
contains a choke that separates the direct current bus
voltage from the data transmission accelerating current
voltage. It also contains data telegram handling
devices.

Fig. 1. Connections in the EIB system.

 Authors are with the Institute of Theory of Electrical

Engineering, Measurement and Information Systems, Warsaw
University of Technology, ul. Koszykowa 75, 00-662 Warszawa,
Poland, e-mail: smialek@iem.pw.edu.pl

Fig. 2. Structure of the EIB modules.

The bus coupling controller contains a
microprocessor with memory (ROM, RAM and
EEPROM) that manages the transmission and control
functions of the module. Here, the actual program with
its parameters is stored and executed. Finally, the
application module contains appropriate buttons,
displays, switches, or physical detectors. This is the
actual “user interface” of the module.

Though the devices are completely autonomous,
they need an external PC computer to upload their
programs and parameters. The PC has to be connected
to the bus when uploading, but after programming, the
computer is no longer necessary. The programming
can be done with a special PC application – ETS. This
application can handle a database of devices with their
bus addresses. It manages all the parameters of the
devices and enables their transmission.

Additionally to the ETS application, other PC
applications can be installed in order to serve as
system controllers. In this case the PC has to be
connected to the bus permanently (“central control” on
Fig. 1). Such applications should conform to the EIB
standards of communication. These standards can be
easilly conformed when an appropriate library of
software components is used [8]. The EIB standard
supplies us with such a library (Falcon) that enables
creating of applications based on the COM [6] or
.NET [7] component programming standard.

II. LAB SIMULATOR OF AN INTELLIGENT BUILDING
In order to teach the design and programming of

intelligent buildings in the EIB standard, an
appropriate building simulator is proposed. The
simulator contains several sensor and actuator EIB
modules with appropriate devices connected. The
connected devices simulate a real house. This
approach enables the students to program the devices
and see the results immediately on a model of a house.

The lab simulator serves as an aid in teaching and
thus is designed to show the main aspects of the EIB
technology. Its front panel (see Fig. 3) contains all the
devices arranged according to their function in the
system. It also contains the description of all the
connections and a miniature model of a house.

I

Combined Teaching of Intelligent Building
Design and Component Programming

Michał Śmiałek, Marcin Seligowski

International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

 85

Fig. 3. Overall view of the EIB system lab simulator.

The top row of elements (Fig. 3) is formed of
actuator modules and a power supply with circuit
breakers. Only these devices need high voltage power
supply. The actuators are the dimming module, binary
output module and voice module. With these modules
the student can control two lighting circuits with
dimming capabilities, four lighting circuits with on-off
capability and eight voice channels (voice messages).
Such capabilities have proven to be satisfactory for
teaching and for testing of PC applications.

Below the actuators (on the right) there are three
rows of sensor modules. These contain a movement
detector, regular switches connected to the binary
inputs of the voice module, two push-button modules
and an LCD display module. Again, this set of sensors
allows the students or testers to design a variety of
intelligent house applications. The sensors are
supplemented with a serial port (RS-232) that enables
communication with an external PC.

To enhance the educational impact of the simulator,
it has been supplied with an extensive system of
descriptions and an additional model of a house. The
descriptions comprise of diagrams showing the
electrical circuit layout (Fig. 4) and connector lines
showing the actual connections. The model of a house
contains lights and window shutters that are connected
parallel to the lights on the simulator’s front panel.
Especially, the window shutters enable interesting
experiments with lighting control. The house is
supplied with an additional light sensor also connected
to the bus. This allows the students to design even
more sophisticated applications. One of such
applications is constant room lighting. Depending on
the outside lighting conditions, and a user-determined
lighting level, the application can control the shutters
and dimmers to keep constant lighting level in a room.

To realize the above constant lighting application,
another EIB module is necessary, which is the logic
module placed in the upper row of devices. The logic
module gives yet more teaching possibilities. Together
with an appropriate PC application it allows for
teaching of intelligent logic controller programming.
Programming is done graphically as a set of connected
logic devices (AND, OR, timer, multiplexer, etc.).

D3
D5 D6 D7 D8

D2

D4

D1

Fig. 4. General diagram showing the electrical connections of the
simulator.

III. PC BUS CONTROL ENVIRONMENT
The intelligent house lab simulator can be combined

with an environment for teaching of component
programming [5]. Such an environment supplies the
students with a set of low level software components
that enable easy bus communication. It relieves the
students from the burden of inventing all the lower
layers of the component-based application. The main
assignment to the students is to write a set of high-
level components that would form a software
application that would control certain features of the
EIB simulator.

The component environment consists basically of
three main components (Fig. 5). The main logical
component is “EIB Switch”, the component
responsible for EIB communication is “Falcon
Connect” and the supportive user interface component
is “Switch UI”.

Fig. 5. General view of the component framework architecture.

All the components are designed and written
according to the .NET component technology

Presentation layer

Logical layer

Communication layer

EIB Switch

ISwitchService

ISwitchControl

Switch UI

IMessageControl

Falcon
Connect

IBusController

User
Component

IModule Service
IComponentControl

User UI

IMessageControl

International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

 86

standard. The three framework components supply
other components with an appropriate set of external
operations grouped into “interfaces”. The Falcon
Connect component uses appropriate components
from the Falcon EIB communication package of
components. These components were written in the
COM technology, and appropriate techniques were
used to make them usable from the .NET environment.

The framework was designed to support education
of proper design of software architectures based on
component technologies. The components are
distributed among three layers. The top layer is the
Presentation layer that contains user interface
components. The next layer is the Logical layer which
contains components supporting the application logic.
Finally, the Communication layer contains
components responsible for bus communication and
also responsible for database communication (not
shown).

A student wishing to write an application based on
the above framework has to implement an interface
that inherits operations from the “IModuleService”
interface. One of the main operations of this interface
is “putMessage()”, which should handle messages
incoming from the bus. This message along with other
offered by the interface should be implemented by the
student in a component placed in the Logical Layer
(User Component on Fig. 5). For the reverse direction
communication the student’s component should use
the “sendMessage()” operation from the EIB Switch
component. This message is handled by the
component that sends it appropriately to the Falcon
Connect component and finally – to the EIB bus.

The example usage of the above operations together
with a complete flow of messages is shown on Fig. 6.
This figures contains a UML [1] sequence diagram
that orders messages temporally from top to bottom.
The sequence starts when the user presses a button on
the user interface. The User UI component makes a
call (“sendMessage”) to the IComponentControl
interface. Then, appropriate component makes another
call (“sendTelegram”) to the IBusControl interface.
When the message is sent successfully to the bus, the
return message acknowledges it. Finally, an
acknowledgement window is displayed on the user
interface through the IMessageControl interface.

IV. TEACHING APPROACH
The EIB Simulator and the EIB Component

Environment (see. Fig. 7) are two novel elements of
the overall environment for teaching of intelligent
building design and component programming.
Together with the ETS Module Configuration
Application and Logical Module Application they
form a complete educational framework. It has to be
noted that this framework can be used both for
teaching students majoring in electrical engineering or
majoring in computer engineering. The first group of
students benefits from training in design of intelligent
electrical installation. The second group benefits from
training in component and logical circuit

programming.

Fig. 6. Sequence diagram for sending a telegram to the EIB bus.

Fig. 7. Procedure for using the proposed teaching framework.

The procedure for using the proposed educational
framework is shown on Fig. 7. The student uses ETS
and LMA to program and configure EIB modules of
the EIB Simulator. ETS can be used for the entry-level
assignments. With this tool only basic functionality of
the simulator can be utilized, as only simple programs
of the actuator and sensor modules can be configured
here. Nevertheless, the tool gives the students a
necessary introduction to the problems of bus
transmission, addressing and proper structuring of the
intelligent building designs.

With LMA, the students can also configure the
Logical Module of the simulator. With the logical
module, more sophisticated applications can be
designed. This module is programmed with a visual
language that depicts logical circuits. Assignments that
require the use of the logical module can be given to
higher-level electrical engineering students or to
computer engineering students in a logic circuit
teaching module.

For the most complex tasks of an intelligent
building, the resources of the EIB Simulator are not
sufficient. This is where PC control modules are
necessary. The students install the EIB Component
Environment on their local PCs or use readily installed
components in the labs. Then they use .NET
programming environment to develop their own
components. The components can be tested without
the EIB Simulator first, and the final test can be
performed with the simulator connected.

:User UI

Module User

:IComponent
Control

:IMessage
Control

:IBus
Control

buttonPressed
sendMessage()

sendTelegram()
O.K.

showMessageBox()
user acknowledgement

O.K. pressed

O.K. pressed

PC

EIB
Simulator

ETS - Module
Configuration
Application

EIB
Component

Environment

RS-232C

LMA - Logical
Module

Application

Student-
Written

Components

International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

 87

Fig. 8. User interface of a panel module written as a student
assignment.

Assignments that involve writing of PC applications
are very suitable for students that take component
programming courses. This is where they can gain
knowledge on general component programming and
.NET programming in particular. The fact that the
students can control a real house through the
appropriate .NET interfaces is an additional
motivation for learning. Further motivation is the
layout and clarity of the EIB Component
Environment. It serves students as a template for
future design of component-based systems.

An example of such a student-written application is
the alarm module shown on Fig. 8. The alarm module
is a part of a larger panel module application [4]. The
panel module allows for designing and commissioning
of user-specified panels. The figure shows part of the
user interface of the module, i.e. one of the designed
panels. This example shows a sophisticated
application with logic necessary to implement a
system that reacts on the telegrams sent by the
movement detector of the EIB Simulator.

V. CONCLUSIONS
The constructed EIB system simulator together with

the EIB component environment forms a complete
framework for efficient teaching of intelligent building
design and component programming. The current
experience with the framework shows that the scope
of the simulator covers all the features necessary in
performing student assignments and in experiments
associated with the EIB system. The component
environment seems to have clear structure enabling the
students to create good architectural models and learn
good practices in component programming.

The current state of the teaching framework allows
for very interesting laboratory assignments where
teams of students construct sophisticated near-
commercial systems. It is possible to assign projects to
groups of students that collectively design and
construct component-based applications
communicating with the EIB simulator. Further
development of the presented teaching framework
would allow on-line remote testing of the application
through the internet or the teaching intranet. This
should include the construction of EIB-IP gateways to

the framework and the use of Web cameras.

REFERENCES
[1] G. Booch, J. Rumbaugh, I. Jacobson, “The Unified Modeling

Language User Guide”, Addison-Wesley, 1998.
[2] EIBA, “Project Engineering for EIB Installations, Basic

Principles”, EIBA sc, 1998.
[3] T. Sauter, D. Dietrich, W. Kastner, “EIB, Installation Bus

System“, Publicis, 2001.
[4] M. Seligowski, “Stanowisko laboratoryjne magistrali EIB z

programowym modułem paneli użytkownika dla
inteligentnego budynku – Master degree thesis”, Warsaw
University of Technology, 2004.

[5] C. Szyperski, “Component Programming – Beyond Object-
Oriented Programming, 2nd ed.”, Addison-Wesley, 2002.

[6] J. Templeman, R. J. Mueller, J. Mueller, “COM Programming
with Microsoft .NET”, Microsoft Press, 2003.

[7] J. Templeman, D. Vitter, “Visual Studio .NET: The .NET
Framework Black Book”, Coriolis Group Books, 2002.

[8] G. WesterMeir, T. Weinzierl, F. Schneider, “Interfacing the
EIB Bus with Windows Computers”, EIB-Proceedings, part 3,
2000.

