
International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

Object Oriented Design of Field Analysis
Translator

Piotr Rowiński, Jacek Starzyński, Stanis law Wincenciak

Abstract— The paper presents object oriented ap-

proach for design of the software package for elec-

tromagnetic fields simulation. The most important

stages of the objective software design are discussed.

I. Introduction

THE first idea of the problem oriented language
for finite element based electromagnetic fields

simulator was born in the Department of the The-
ory of Electrical Engineering (currently Depart-
ment of The Electrical Engineering and Applied In-
formatics) of Warsaw University of Technology in
1985. The concept of problem oriented language
was borrowed from the circuit simulators as SPICE
and NAP. The authors wanted to design a simi-
lar computer language for formal description of 2D
boundary problems and tasks of field analysis, op-
timal design and identification.

Following several test releases of the language
and its interpreter the first stable version—Field
Analysis Translator (FAT) 3.0 was released in
1989 [5]. The interpreter was written in Fortran
and C under the MS DOS operating system. FAT
3.0 allowed one to analyze and to optimize two-
dimensional and axisymmetrical problems of elec-
trostatic, magnetostatic and time harmonic electro-
magnetic fields.

FATps ver. 0.1 - Jan 1994

= ? enr()

DENSITY OF ENERGY:

 < 0.17674E-03
 < 0.31470E-03
 < 0.45266E-03
 < 0.59062E-03
 < 0.72858E-03
 < 0.86653E-03
 < 0.10045E-02
 < 0.11424E-02
 < 0.12804E-02
 < 0.14184E-02
 < 0.15563E-02

 > 0.38787E-04

TOTAL ENERGY:

SOURCE ENERGY:

(/1 METER OF LENGTH) [J]
 = 0.00000E+00

 = 0.21480E-08

Fig. 1. User interface of FATpc 3.0 interpreter

FAT was primarily designed to be used for teach-
ing. For many years it was successfully used for
teaching of field theory as well as numerical meth-
ods for solving partial differential equations. The

Authors are with the Institute of Theory of Electrical En-
gineering, Measurement and Information Systems, Warsaw
University of Technology, ul. Koszykowa 75, 00-662Warsaw,
Poland, email: jstar@iem.pw.edu.pl

conception of FAT as the programming language,
not GUI driven field simulator (as the most of such
programs) is rather unusual. However, our experi-
ence has proven that this conception is excellent for
teaching purposes. Easy and intuitive syntax allows
a student to concentrate on the field model and sim-
ulation problem itself, not on the user interface to
the simulator. Description of the boundary prob-
lem and simulation task as a computer program
makes it human readable what allows analysis of
the model for simple problems even without com-
puter and makes the boundary problem portable.

Aside of the main application of FAT, several ex-
tended versions of the interpreter were made. They
were used for our research work as well as for solv-
ing many practical problems. Many years of ex-
perience with FAT pushed authors to redesign the
language and the interpreter to make it more ex-
pandable and portable. The new project, started
in 2002 is aimed to design a completely new, ob-
jective, portable, public domain code of the FAT
interpreter.

The objective design of the interpreter allows us
to solve easily the most important problems of code
portability and extensibility which were difficult to
solve in procedural implementation of the previous
version.

II. Object oriented programming

A. Software models

Every model of the program“life” can be divided
into several stages. Stage is usually defined as the
time between the “milestones” of the program pro-
duction. Each stage ends with some goals reached
and some documentation finished. The decision of
the processing to the next stage is then taken by
the project managers [3]. Many models of the pro-
gram design were presented. Each of them empha-
sizes some aspects of the design process. One of
the relatively new, is the spiral model, proposed by
Boehm in 1988 [1] and shown in Fig. 2.

The spiral model presents development of the
program as a continuous process of circulation be-
tween several stages. As the result of each circum-
ference the new version of the program is released.
Each repetition of every stage becomes longer, be-
cause the project grows and every time more work
needs to be done. The spiral model assumes that
iterations bring continuous, systematic growth of
the system architecture and its possibilities. The
iterative process can be seen to be driven by the

17

International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

Fig. 2. Spiral model of the program life

risk—in each new version the most important dan-
gers for success of the project should be eliminated
or the project should be stopped if risk of fail be-
comes too large.

B. Object oriented model

Most of the new methodologies of software pro-
duction are based on the object oriented point of
view. In such approach the most basic construction
block of the program is a class or an object. Object
oriented programming sees programs as collections
of objects which cooperate to solve the problem [3],
[4]. Each object is an instance of some class and all
classes build some kind of hierarchy tree, bounded
together by superclass-subclass relations. Such hi-
erarchy allows a program designer to place the com-
mon code in a super-class, and then design special-
ized code in sub-classes.

Each object represents an item from the problem
domain. Class is a set of the similar objects, it can
be also seen as the type of objects. Each object has
its own identity (name), state (data) and set of op-
erations which can be performed by this object or
with this object. The other concepts which can and
should be used in an objective code are polymor-
phism and late binding. Polymorphism means that
a variable of a given class-type can represent not
only an object of this class, but also an object of
any of its sub-classes. Decision of the exact type of
the object represented by a given variable is made,
when an object is to be used—late binding means
that the proper methods for the real object, not for
the variable type are called [3].

III. Application design

A. Analysis of requirements

At that moment, the functionality of the appli-
cation can be described with single scenario. It is
typical for all field simulators. First of all, the input

data must by read either directly from user’s con-
sole or from another source (disk file). These data
describe geometry of the boundary problem. Next,
the defined domain should be divided with finite
elements. After boundary conditions and source
functions values are assigned properly, the main
equations system can be formulated and solved.
The final results must be presented to the user
(what usually requires some post-processing of the
data) and/or saved in the system resources.

Such a description of the simulator run assumes
single and simple application control flow. Of
course, it’s not enough in a typical use that we ex-
pect, but such a short and simple description of the
functionality allows us to identify most of the sys-
tem’s elements that resides on the highest abstrac-
tion layer. The abstraction shows some properties
of class or the whole system and hides other ones,
less important at the moment the analysis is made.

Fig. 3. Components of the FAT system

Based on the scenario presented above the four
independent system’s parts can be pointed (Fig. 3).
The system module contains classes responsible
for cooperation with underlying operating system,
which includes data managing, graphical and I/O
operations. The part called interpreter is used
to check if the syntax of commands provided by
user or read from file is correct. The second task
of the interpreter is to pass the control to the
appropriate program’s part. All classes used to
hold information about the boundary problem are
grouped in the fat’s objects module. The last
part—math—keeps definitions of the mathematical
expressions’ syntax. It also contains all routines
necessary to manage those expression. All associa-
tions between program’s parts are shown in Fig. 3.

B. Class identification

The object model of the real world is built in the
object oriented analysis. During that process the
class’s requirements are investigated. The work re-
sults are used theh as the base for object oriented
developing. At the very beginning, some classes
that describes problem need to be known. It helps
to define bounds within which the further explo-
ration will be made. When the first classes are
found, we can say that abstraction is formulated
(highest possible). In the next iterations, lower and

18

International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

more detailed layers are built. When that process
is finished, the collection of those abstractions aims
the solution of the undertaken problem.

There are many different analysis methods. The
simplest possible was chosen for our use. It’s called
“linguistic based information analysis”. In order
to perform such an analysis, good, formal, human
readable description of the problem is needed. In
the given description all verbs and nouns must be
marked. The nouns indicate the potential classes.
The verbs shows operations that class will have to
do.

In the case of FAT system, the brief character-
istic of the finite element method and idea of 2D
geometry description is necessary starting point for
the objective analysis [2]. The main idea of the
FEM method is the division of the investigated do-
main (containing one or more sub-domains which
we call macroelements) into number of small ele-
ments of simple shape. Each element is contains
nodes in which values of some field quantity should
be calculated (we do not consider edge-elements).
The domain is approximated with straight line seg-
ments as the elements’ bounds are the straight line
too (linear elements). The boundary condition can
be assigned to any segment or node. The source
function values and materials can be defined differ-
ently for any macroelement.

Based the description presented above, the fol-
lowing classes were identified: macroelement, el-

ement, node, boundary condition, material and
macroelement’s boundary. Some new classes can be
found, if we step down into the abstraction layers
hierarchy. The bound of the macroelement is built
with sequences of the segments (we shall call it a
chain). Each segment has its own beginning and
end—those points will be called basis points. Any
geometrical curve can be used to build the segment,
for example: line, circle, spline. The materials can
be linear and nonlinear.

As can be reviewed, the collection of the classes,
that are unconnected with any association rules,
was produced as the effect of the object oriented
analysis.

C. Design of main classes

The responsibilities of the particular objects
must be defined now. As the responsibility we un-
derstand tasks including attributes and methods,
the objects should have, use and share [3], [4]. It’s
the right time to find the attributes and methods
which the known classes are made of. The case
analysis was used to find out the methods that each
object must have. The case is the action taken by
a user that forces system to work in the specific
way. Using the case analysis, we know for exam-
ple that a basis point ought to generate (mkNds())
and delete (rmNds()) a node. When the system
requires that, any object should present its name

(objName()) and type (objType()). Additionally,
there are defined methods used to print, draw and
manage data within the object.

Fig. 4. Specification of two example classes

The complete specification of the basis point class
is present in Fig. 4. It contains all other associa-
tion discovered during the developing process. This
specification contains the necessary methods (func-
tions) and atributes (fields). These attributes are
needed for object to operate properly. The x and
y are the coordinates of the point in 2D geometry.
Atribute name identifies the object and type helps
to manage the data structures and makes the pro-
gram works smoothly. The nodes attribute points
to node that was generated by the basis point.

On the right side of Fig. 4, the declaration of
class circle is shown. All methods and attributes
were discovered exactly the same way. It’s worth
to notice that despite objects are used to hold to-
tally different data some methods and attributes
are common. What’s more, nodes attributes and
mkNds(), rmNds() methods are common for small
group of objects that contain: basis point, chain

and segment classes.
These facts will be used to refine object model in

the next stage of developing process.

D. Relations identification

Now, the association between classes must be dis-
covered and classified. In order to find complex
associations rules the incremental method must be
used. It means that associations rules must en-
velop while the system grows. In fact a lot of dis-
covered association will explore collaboration paths
between abstraction layers.

It was noticed earlier that each object has meth-
ods called objName() and objType() used for an
identification by the system. Another common part
of all classes are interfaces for printing, drawing
and data managing. That’s why a new class called
fatobj was discovered. Such an object will never
be created during the program runs—it’s only used
to group and share all methods common for all ob-
jects that inherit from it. There are much more
generalizations that can be uncovered in the FAT

19

International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

Fig. 5. Class hierarhy for FAT objects

system. Most of it concerns only a small part of all
classes, but these relationships can improve the ob-
ject scheme and makes the final program code less
complicated and far more effective. In Fig. 5 the
complete inheritance hierarchy is presented.

The fatobj is the root of the hierarchy tree. As
an abstract class it assure that all classes below it
will share part of the interface. It’s absolutely nec-
essary, if the similar behavior of the whole system,
independently on the situation must be kept. All
objects used to describe the boundaries of the sim-
ulated domain are derived from the topol abstract
class. Similarly, figure class is the highest leaf of
the sub-tree that contains objects representing ge-
ometrical curves.

IV. Implementation

The C++ was chosen as the production lan-
guage [6]. Creation and managing of the new classes
is very fast and easy in C++ which fully supports
the object oriented programming. The complicated
hierarchies of the objects can be built including
single and multi inheritance. Polymorphism and
late binding mechanisms are also found in the C++
what allows to differ object behavior while the pro-
gram runs. The C++ language is known to be most
effective and popular. There are many routines,
that are made in C++ by other authors, which can
be attached to the application under developing.

During the implementation all classes must be
coded in the production language. It allows pro-
grammer to improve the project, so that new classes
could be eventually found on lower abstraction
layer. When the basis implementation exists the
current iteration of developing process can be con-
sidered to be done. The whole project will envelope
further in the next iterations.

V. Conclusions

Due the limited space only the first (but most
important) phase of the objective FAT interpreter
was presented. Current version of the project lacks
some functionality of the older version, but the
most important kernel of the simulator is already
finished. This kernel analyzes of the FAT language
program and stores all data necessary to define
a boundary problem in sort of “abstract model”.
The discrete, numerical model is created only if
a user requests mesh generation or filed simula-
tion. Such approach allows one to make the model
parametric—dimensions,materials, boundary con-
ditions, etc. can be defined as functions of several
parameters what can be used for optimization or
variant calculations.

The kernel of interpreter can work with differ-
ent field simulators. FAT is designed to be an user
front-end to the filed simulator. Currently the old
FEM engine, designed for the previous version of
FAT can be used, but a new objective engine based
on public domain Getfem++ package [7] is being
tested.

References

[1] B. Boehm, “A Spiral Model of Software Development
and Enhancement”, IEEE Computer, Vol. 21, No. 5, pp.
61-72, 1988.

[2] Bolkowski S. et. all: Komputerowe metody analizy pola
elektromagnetycznego. Warszawa: WNT 1993.

[3] Booch G.: Object-Oriented Analysis and Design with
Applications. California: The Benjamin Cummings Pub-
lishing Company, Inc. 1994, second edition.

[4] Brumbaugh D.: Object-Oriented Development Building
CASE Tools with C++. New York: John Wiley & Sons,
Inc. 1994.

[5] FAT Reference Manual (for FATpcv, ver. 3.2 and above).
Warszawa: IETIME Politechniki Warszawskiej 1993.
http://www.iem.pw.edu.pl/zetis/oprogramowanie/FAT/

[6] S. Lippman, Inside the C++ Object Model, Addison-
Wesley Longman , Reading,MA, 1996.

[7] http://www.gmm.insa-tlse.fr/getfem/

20

