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Realization Problem for Positive Multivariable
Linear Systems with Time-Delay
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Abstract — The realization problem for positive
multivariable discrete-time systems with one time-delay
is formulated and solved. Conditions for the solvability of
the realization problem are established. A procedure for
computation of a minimal positive realization of a proper
rational matrix is presented and illustrated by an
example

I. INTRODUCTION

n positive systems inputs, state variables and
Ioutputs take only non-negative values. Examples of

positive systems are industrial processes involving
chemical reactors, heat exchangers and distillation
columns, storage systems, compartmental systems,
water and atmospheric pollution models. A variety of
models having positive linear systems behaviour can
be found in engineering, management science,
economics, social sciences, biology and medicine, etc.
Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive
systems is more complicated and less advanced. An
overview of state of the art in positive systems theory
is given in the monographs [4, 5]. Recent
developments in positive systems theory and some
new results are given in [6]. Realizations problem of
positive linear systems without time delays has been
considered in many papers and books [1,4, 5]. Explicit
solution of equations describing the discrete-time
systems with time-delay has been given in [2].
Recently, the reachability, controllability and
minimum energy control of positive linear discrete-
time systems with time-delays have been considered in
[3,7].
In this paper the realization problem for positive
multivariable discrete-time systems with time-delay
will be formulated and solved. Conditions for the
solvability of the realization problem will be
established and a procedure for computation of a
minimal positive realization of a proper rational matrix
will be presented.
To the best knowledge of the author the realization
problem for positive linear systems with time-delays
has not been considered yet.
Consider the multivariable discrete-time linear system
with one time-delay

II. PROBLEM FORMULATION
X =AX +AX, +BU ieZ, ={0L...} (1
y; =Cx; + Dy, (1b)
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where X; € Rn, U € Rm, Yi € R are the state

. . nxn
vector, input and output, respectively and A eR s ,

k=01 BeR™, CeR"™, DeRM™ .

Initial conditions for (1a) are given by
X, % €R" Q)

Let fom be the set of MXM real matrices with

. . n nx1
nonnegatlve entries and RJr = R+ .

Definition 1 [3]. The system (1) is called (internally)

positive if for every X_j, X, € Rf and all inputs

U eR’ i€Z, wehave X €R] and ¥, €R/
fori€Z+.

Theorem 1 [3]. The system (1) is positive if and only
if
A eR" A eR™ BeR" CeRM",
DeRM™ (3)

The transfer matrix of (1) is given by

T@)=C[l,z-A-AZ''B+D @

Definition 2. Matrices (3) are called a positive

realization of a given proper rational matrix T(Z) if
and only if they satisfy the equality (4). A realization
(3) is called minimal if and only if the dimension N of

Ao and A1 is minimal among all realizations of
T(2).
The positive realization problem can be stated as

follows. Given a proper rational matrix T(Z). Find a

positive realization (3) of the rational matrix T (Z)
Conditions for the solvability of the problem will be
established and a procedure for computation of a
positive realization will be presented.

III. PROBLEM SOLUTION

The transfer matrix (4) can be rewritten in the form

T(z)=clz'(1, - Az-A)'B+D =
_CzAdj[1,22-Az-AIB N(z)
o det|l,2? —-Az-A] d(z)

where

(&)

+D= +D
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N(z)=C Adj[l, 2> - Az-AJB=

=Ny 2™ + N, 522" 4+ Nz + N ©
d(z)=det[l 22~ AZ-A]=
=z"-a, 2" -...—az-a,

and Adj [| P -AzZ- A1] denotes the adjoint

matrix for [|nZ2 -Az- Al]

From (5) we have

D=1imT(z) e

Z—w

since 11_{130 [Z_l(lnz2 -Az- A)Tl =0

The strictly proper part of T (Z) is given by

d(z) ®)

Therefore, the positive realization problem has been
reduced to finding matrices

A eR"™ A eR™ BeR" CeRP" (9

for a given strictly proper rational matrix (8).

Lemma 1. The strictly proper transfer matrix (8) has
the form

Ty (Z)=M (10)

d'(z)
if and only if det A =0 where
d(z)=2""-a, 2"~ -az-a

Proof. From definition (6) of d(Z) for Z=0 it
follows that d, = det A Note that d(Z)= zd '(Z)

if and only if @ =0 and (8) can be reduced to (10).
|

Lemma 2. If the matrices Ao and Al have one of the
following forms

A

>l

g

:;>)

>

[N )

(=]

o o o ... ©
L= D o o ..

o o ...

az n-1

az n-3

[T
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0 O
0 O
eRnxn’
0 O
0 a3
0 a‘2n—l_
0 0 1 (12a)
0 0 0
0 0 0
Do : |eR™
0 0 0
0 az(nfz)
0 1 az(n—l)_
a'2n—7 aZn—S 0
0 0 0
0 0
azn—3 aZn—l_
Qynoa)  Ay(na) 0 (12b)
0 0 0
1 0
0 1
a'2(n72) az(n—l)_
0 0 |
0 a2n—5
0 a2n—7
a3
1
0 0 |
0 0 ]
0 az(n-3)
0 az(n74)
S (12¢)
1 2
0 a,
0 0 |
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a2n—l a2n—3 0
0 0 o ... 0 0 O
Ao _ . . . . . . l
0 0 0 0
L 0 a'2n—5 a'2n—7 a3 al 0_
(a0 Bypa O 0 1]a24)
1 0 0 0 0
~ 0 1 0 0 0
A = :
0 0 0 1 0
L 0 az(n-s) a2(n-4) a, & 0_
then

det[1I,22 - Az—A]=det |1, - Az~ A]=

= det [Inz2 - Az —/:\l]:det [lnz2 ~AzZ- A]:

M a2 —ay, 22 - —az-a,
(13)

Proof. Expansion of the determinant with respect to
the first row yields

=Z

det[1,22 ~Az— A=

z’ 0 .. 0 0 -1
-a,2-3, A
—az-a, -1 .. 0 0 0
—8, 2=,y 0 .. 20 0 0
8, 2=,y 0 ... =1 727 -, ,7-8,,,
0 0 . 0 -1 z’-—a, Z-ay,,

22(”’2)(24 —a, 7°-a )22 —a,, ;- az(n—Z))+ (=D™

2n-1 2(n-1
—Z-4a, zZ 0 ... 0 0
—a,Z—a, -1 22 0 0
>< .2 = =
—a,, ,Z— az(n,4) 0 0 ... z 0
— 85273 0o 0 .. -1 z?
0 o o0 ... 0 -1
_ ZZn _aznqzznil _az(n71)22(n71) —..—az-a,

(13)

The proof for (12b) follows from the fact that

'Ko = AoT,Kl = A,T and
det [Inz2 —KOZ—E]:det [Inz2 —AOZ—AI]T

where T stands for transpose.

It is easy to verify that ﬁb =PAP, A1 =PAP

where
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0
0 ... 10

P=
01 .00
10 ... 0 0]

Taking into account that P™' = PT = P we obtain
det 1,2 — Az - A|=det[1,2 - Az A]
Finally note that Ko = AOT and Kl = AT . ]

The matrices Ay and A having one of the forms (12)

will be called the matrices in canonical forms.
The following two remarks are in order.

Remark 1. The matrices (12) have nonnegative
entries if and only if the coefficients

a,k=0,1..,2n—1 of the polynomial (13) are
nonnegative.

Remark 2. The dimension NX1N of matrices (12) is
the smallest possible one for (8).

Definition 3. A pair (AbaA) of square matrices

Ab,Al e R™ is called cyclic if and only if its
characteristic polynomial

d(z)=det |1, 22 - Az-A|=

14
=z"-a, 2" -...—az-a, 1

2n-1

is equal to the minimal polynomial \P(Z) of the pair,
ie. d(z)="¥(2).

It is well-known that the polynomials are related by

D (2) (15)
and that
¥(z)=d(z) (16)
ifand only if Dy_(2)=1 or equivalently
(2)=i,(2)=...=1,,(2) (17

where Dn_l(Z) is the greatest common divisor of all
n-1 order minors of the matrix
[| 2P —AzZ- Ai]and i, (2),k =1,..n—1are the its

monic invariant polynomials.
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Lemma 3. Every pair of the matrices (12) is cyclic for

any values of its parameters & , K =1,2,..2n—1.

Proof. The details of the proof will be given only for
the pair (12a). In the remaining cases the proof is
similar.

Note that the N — 1 order minor obtained by removing
the second row and the first column of the matrix

122 -Az-A]=

[ 2* 0 0 0 -1 1
-a,z-a, z’ 0 0 0
~a,z-a, -1 0 0 0

—8,, ,Z—a,,4 O 2 0 0

—8y, 528y 0 ... -1 27 —a,  Z-a,,,

| 0 0 o 0 =1 2% =2, ,Z—ay,, |

(18)
is equal to (=)™ Therefore an(z):l and by
(s) ¥(z)=d(2). .

. nxn .
For any square matrices ALA R the inverse

-1
matrix [lnz2 -Az- Al] can be written in the

form

2 —1_N(Z)
[1.22-Az-A] - 36

where N(Z) is an NXN polynomial matrix and

(19)

d (Z) is a polynomial. The matrix (19) is called in the
N(z)

d(z)

the leading coefficient of d (Z) is equal to 1.

standard form if the matrix is irreducible and

Definition 4. The matrix (19) is called normal if and
only if, every nonzero second order minor of the

polynomial matrix N(Z) is divisible (with zero

remainder) by d (Z)

Lemma 4. The standard matrix (19) for N 22 s
normal if and only if the pair (Ab,A) is cyclic.

Proof. Let the pair (Ao,Al) be cyclic. Then by
definition 3, (16) and (17) hold and the Smith

canonical form of |1 ,2° — Ajz — A, | is equal to
1,22 = Az-A | =diag[l 1 1 d(z)]
(20)

The adjoint matrix to (20) is given by
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Adi[1,2* - Az-A] -
_ding[d(z) d(z) ... d(z) 1]

and every nonzero second order minor of (21) is

ey

divisible by d(Z), By Binet-Cauchy theorem every
nonzero second order minor of the matrix

V(Z)Adj [|nZ2 -Az- Al]s U (Z) is also divisible
by d(Z) since it is the sum of products of second
order minors of the unimodular matrices V (Z),

U (Z) and of (21). The necessity will be shown by
contradiction. By assumption the matrix (19) is
irreducible. If the characteristic polynomial (14) is not

equal to the minimal one “P(Z), \P(Z)i d(Z) then
by (15) D._, (Z) #1 and every nonzero N —1 order
minor  of [I P =AzZ- A,] is divisible by
D, (2) det 1,22 = Az- A|=D,_,(2)d(2)

and the matrix (19) is reducible. So we get a
contradiction. m

Lemma 5. If the pair (%,A) has the canonical form
(12a) then the adjoint matrix Adj [| N 7’ - Az - Al]
can be decomposed as follows

Adjll,22 - Az-A]=

o _ (22a)
=P(2Q(2)+d(26(2) a
where

_ | i
220 _a, - —az-a,
Bz)- 2202 _a 7" -az-a,
2~ a2n—123 - az(nfz)22
ZZ
) (22b)
6(2) _ [Zz(n—l) —a, 7" -
_ aﬂ(n_z)zz(ns) 1 22 7 Zz(nfz)]
0 .0 0]
* k *
G(z)=
* 0 ... x =
[+ 0 ..ox %]

* denotes the entries that are not important in the
considerations.

Similar decompositions hold for the pairs (12b), (12c)
and (12d).

Proof. The adjoint matrix has the form
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Adj[l,2> - Az-A]=

2(n-1) 2n-3 2(n-3)
z —&y,,Z T T az(nfz)Z

*

*

*

*

1 7% ... Zz(n-z)
220V _a, 72" -.. -—a,z-a, * - ¥
720 _q, - -az-a, * - %

4 3 2
Z —8y,7 —8yn )2 o *
7?2 * L. *
(23)

and it can be written in the form (22) since by lemma 4
every nonzero second order minor of (23) is divisible

by d (Z) It is easy to verify that (22b) satisfies (22a).

Substitution of (22a) into (8) yields -
_CzAdi[1,2?-AZ-AB
¥ det|l Z2-Az-A|
P,(2)0 (i)" MAL
=< 4 C2G(z)B
d(z)
where
P(z)=CP(z), Q,(2)=Q(z)B (25)

Remark 3. From (24) it follows that the positive
realization (9) of (8) is independent of the polynomial

matrix 6(2) (CZC?(Z)B ).
Using (22b) and (25) we obtain

P.(z)=CP(z)=[c, C, ... C,]
A | B}
2200 _a, 7" —az-a,
. 20 —a, 2" ——az-a,|  (26a)
Z4_aznfle az(nfz)Zz
22

= szZ(nil) -C,a,,,27" +

+ (Cs _az(n—l)Cz )ZZ(niz) et

+ (Cn —a,, )Cpy = —,Cy —a402)z2 +o.
~(..—a,c,-a,C, )z +
+C,-a,C,-a,C,...
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Qp (Z) = 6(2)8 =

_ [22(“‘1) —a, 2" ... —az(n_z)zz(”’”
Bl
122 7% 2% B_2 -
B, (26b)

_ 2(n-1) 2n-3
=B,z -a,,,Bz7 " +

+ (Bn - az(n—z)Bl )Z 22 +
+ (Bn—l —&, Bl )sz5 +
+ (Bn—z - az(n—z)Bl )Z 20) +

+B,,2*m% 1+ +B,z* +B,

From lemma 5 it follows that the strictly proper matrix
(8) can be decomposed as follows

N(z)= P(z)Q(z)+d(2)G(2) 27)
where
P(z)=Py, 2" =P, ;2" +
+Py 2" -+ P2’ —Pz+P,
Q(2)=Qyp 2" -Q,, 2" + (28)

+ Qz(nfz)zz(niz) T +Q222 _le +Q0
G(z) e R™"[z]

(the set of polynomial matrices)

The polynomial matrices P(Z), Q(Z) and G(Z) of
(27) can be computed by the use of the following
procedure.

Procedure 1.

Step 1. Using elementary row and column operations
perform the reduction

U(zN(zV(z)= p(Z)L(lz) n;((zz))}

where U(Z) and V(Z) are unimodular matrices of
the elementary operations,

p(Z) is a polynomial, r(z) € R™™™"[z],
c(z)e R*'[z] and M(2) e RPV ™D 7],
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Step 2. Compute the matrices

P(0)-U" 0ple) g Q)= r ()

o) @

0 0

S0 ]g -

Comparison of (26) and (28) yields

P2(n—1) =C,, P,;=Ca,,,

Pz(n_z) =C, — 8, 1)C Py =

=C, -a,C,-a,C, (30)
Qo) =Bis Quns =25,,B;,

Qz(n—z) =B, _az(n—z)Bl Q) =B,

Knowing the matrices Pk and Qk
for K =0,1,...,2(N—1) we can find from (30)

Ci and Bi,izla an
From (30) it follows that B; € R}"

of the matrices C and B .
m and Ci S Rf

for i=1, ,nifP. eRP Q eR"
fork =0,1,...,2(n—1) and a; = 0 for
j=0,L...2n-1

Therefore the following theorem has been proved.
Theorem 2. Let the transfer matrix (4) be normal. The
positive realization problem has a solution if the
following conditions are satisfied

() T(0)=1imT(z)eR"™ +

(ii) The coefficients & , K =0,1,...,2n—1
of the polynomial d (Z) are nonnegative.
(i) The polynomial matrix N(Z) of (8) can be
decomposed so that the polynomial P(Z) and
Q(Z) (defined by (28)) have nonnegative coefficients
matrices, i.e. P € Rf, Qk € Rixm
for K=0,1,...,2(n—1) and the relations (29) are

satisfied.
If the conditions of theorem are satisfied then the

positive realization (3) of T(Z) can be found by the
use of the following procedure.

Procedure 2.

Step 1. Using (7) and (8) find D and the strictly
proper rational matrix Tsp (Z
Step 2. Knowing the
k=0,,..2n—1of

d (Z) find the matrices (12a) (or (12b), (12¢), (12d))

coefficients &,

Zakopane 2004

Step 3. Using procedure 1 find the decomposition (27)
of the polynomial matrix N(Z) of (8) and the

coefficients matrices Px and Qk, of the polynomial
matrices (28).

Step 4. Using (30) find B and C;, 1=1, ,N and

the matrices B and C .

Example. Find the positive realization (3) of the
transfer matrix

1
T(z)=
(@) 2’ -7"-27°-37-2z2-1
y 227 +724 +32° -4z2-2, 2’ +22% -z
2 +1024 +62° +42* + 221, 47*+27°+37* +12
(31)

Using the procedure 1 we obtain successively

Step 1. From (7) and (8) we have

D=limT(2) [ } 62
and

T,@)-T-0- 4o
where

N(z)=
9z* +77° +62°,

32422 +32° + 241,
11z* +82° +72* +4z,

47* +27° +32%7 +z

d'(z)=2"-2*-22* -32* =221
Step 2. Taking into account that &85 =0,
a,=a,=1 a,=a,=2, 8, =3 and using (12a)
we obtain

A =

(34)

S = O
S O O
oS O O

0
0
1

NS 2N O R

0
3, A=
1

Step 3. Using the Procedure 1 we decompose the
matrix N(2) in the form (27) with
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-7 +1 1 1
P(z)= =| |2*-| |27+
-7’ +7 1
-Pz*+P,z’-Pz+P,

ﬁ =P,z*
(2)

Qlz)= [z -2°+17°-371 1 +1]—
=1 o]z* -1 o2+ 1]*+
~[3 0]z+[0 1]=

=Q,2*-Q,2° +Q,2° -Qz+Q,

-2°+z2-3 -1
G =
) -27+72-4 -1

(35)

Step 4. Using (30) and (35) we obtain

B1:Q4:[1 O]’ 2=Q0+3.2Q4=[2 1]7
B,=Q,+a,Q, =[3 1]

(36a)
B, 1 0
B=|B, 2 1
B, 3 1]
and _
1 1
C=P= ol C, =P, = 5
2
C,=P,+a,P :[3_
) (36b)
1 1 2
C:[Cl C, C3]:_0 1 3

The desired positive minimal realization of (31) has
the form (34), (36) and (32).

IV. CONCLUDING REMARKS
The realization problem for positive multivariable
discrete-time systems with one time-delay has been
formulated and solved. Canonical forms (12) of the

system matrices A, and A, have been introduced. Tt

has been shown that the pair (12) is cyclic. Conditions
for the existence of positive minimal realization (3) of

a proper rational matrix T(Z) have been established.
A procedure for computation of a minimal positive
realization of proper rational matrix has been
presented and illustrated by an example. The
considerations can be extended for multivariable
discrete-time linear systems with many time-delays.
An extension of the considerations for continuous-
time linear systems with time-delays is also possible.
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