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 Abstract — The realization problem for positive 
multivariable discrete-time systems with one time-delay 
is formulated and solved. Conditions for the solvability of 
the realization problem are established. A procedure for 
computation of a minimal positive realization of a proper 
rational matrix is presented and illustrated by an 
example 

I. INTRODUCTION 
n positive systems inputs, state variables and 
outputs take only non-negative values. Examples of 
positive systems are industrial processes involving 

chemical reactors, heat exchangers and distillation 
columns, storage systems, compartmental systems, 
water and atmospheric pollution models. A variety of 
models having positive linear systems behaviour can 
be found in engineering, management science, 
economics, social sciences, biology and medicine, etc. 
Positive linear systems are defined on cones and not 
on linear spaces. Therefore, the theory of positive 
systems is more complicated and less advanced. An 
overview of state of the art in positive systems theory 
is given in the monographs [4, 5]. Recent 
developments in positive systems theory and some 
new results are given in [6]. Realizations problem of 
positive linear systems without time delays has been 
considered in many papers and books [1,4, 5]. Explicit 
solution of equations describing the discrete-time 
systems with time-delay has been given in [2]. 
Recently, the reachability, controllability and 
minimum energy control of positive linear discrete-
time systems with time-delays have been considered in 
[3, 7]. 
In this paper the realization problem for positive 
multivariable discrete-time systems with time-delay 
will be formulated and solved. Conditions for the 
solvability of the realization problem will be 
established and a procedure for computation of a 
minimal positive realization of a proper rational matrix 
will be presented. 
To the best knowledge of the author the realization 
problem for positive linear systems with time-delays 
has not been considered yet.  
Consider the multivariable discrete-time linear system 
with one time-delay 

II.  PROBLEM FORMULATION 

   { },1,01101 =∈++= +−+ ZiBuxAxAx iiii    (1a) 
             iii DuCxy +=                      (1b) 
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where 
n

i Rx ∈ , 
m

i Ru ∈ , 
p

i Ry ∈  are the state 

vector, input and output, respectively and 
nn

k RA ×∈ , 
1,0=k , mnRB ×∈ , npRC ×∈ , mpRD ×∈ . 

Initial conditions for (1a) are given by 

      
nRxx ∈− 01,                                               (2) 

Let mnR ×
+  be the set of mn×  real matrices with 

nonnegative entries and 1×
++ =
nn RR . 

 
Definition 1 [3]. The system (1) is called (internally) 

positive if for every 
nRxx +− ∈01,  and all inputs 

m
i Ru +∈ , +∈Zi  we have 

n
i Rx +∈  and 

p
i Ry +∈  

for +∈Zi . 
 
Theorem 1 [3]. The system (1) is positive if and only 
if 

   
nnRA ×

+∈0 , nnRA ×
+∈1 , mnRB ×

+∈ , npRC ×
+∈ , 

   mpRD ×
+∈                                                          (3) 

 
The transfer matrix of (1) is given by 
 

       ( ) [ ] DBzAAzICzT n +−−=
−− 11

10           (4) 
 
Definition 2. Matrices (3) are called a positive 
realization of a given proper rational matrix ( )zT  if 
and only if they satisfy the equality (4). A realization 
(3) is called minimal if and only if the dimension n  of 

0A  and 1A  is minimal among all realizations of 
( )zT . 

The positive realization problem can be stated as 
follows. Given a proper rational matrix ( )zT . Find a 

positive realization (3) of the rational matrix ( )zT . 
Conditions for the solvability of the problem will be 
established and a procedure for computation of a 
positive realization will be presented. 

III. PROBLEM SOLUTION 
The transfer matrix (4) can be rewritten in the form 
 
( ) ( )[ ]

[ ]
( )
( ) D
zd
zzND

AzAzI
BAzAzICz

DBAzAzIzCzT

n

n

n

+=+
−−
−−

=

=+−−=
−−

10
2

10
2

1
10

21

det
][Adj     (5) 

where 
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and [ ]10

2Adj AzAzIn −−  denotes the adjoint 

matrix for [ ]10
2 AzAzIn −−  

From (5) we have 

                             ( )zTD
z ∞→

= lim                          (7) 
 

since ( )[ ] 0lim 1
10

21 =−−
−−

∞→
AzAzIz nz

. 

The strictly proper part of ( )zT  is given by 
 

 ( ) ( ) ( )
( )zd

zzNDzTzTsp =−=                             (8) 

 
Therefore, the positive realization problem has been 
reduced to finding matrices 
 

   
nnRA ×

+∈0 , nnRA ×
+∈1 , mnRB ×

+∈ , npRC ×
+∈   (9) 

 
for a given strictly proper rational matrix (8). 
 
Lemma 1. The strictly proper transfer matrix (8) has 
the form 

  ( ) ( )
( )zd
zNzT sp '

' =                                           (10) 

 
if and only if 0det 1 =A  where 
 
( ) 12

22
12

12 azazazzd n
n

n −−−−=′ −
−

−
       (11) 

 
Proof. From definition (6) of ( )zd  for 0=z  it 

follows that 10 det Aa = . Note that ( ) ( )zdzzd ′=  

if and only if 00 =a  and (8) can be reduced to (10). 
� 
 
Lemma 2. If the matrices 0A  and 1A  have one of the 
following forms 
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                                                                             (13) 
Proof. Expansion of the determinant with respect to 
the first row yields 
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                                                                             (13) 
The proof for (12b) follows from the fact that 

TAA 00 = , TAA 11 =  and 

[ ] [ ]Tnn AzAzIAzAzI 10
2

10
2 detdet −−=−−  

where T  stands for transpose. 

It is easy to verify that PPAA 00
ˆ = , PPAA 11

ˆ =  
where 

                 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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P  

 
Taking into account that PPP T ==−1  we obtain  
 

[ ] [ ]10
2

10
2 detˆˆdet AzAzIAzAzI nn −−=−−  

 

Finally note that TAA 00
ˆ~

=  and TAA 11
ˆ~

= .         � 

 
The matrices 0A  and 1A  having one of the forms (12) 
will be called the matrices in canonical forms. 
The following two remarks are in order. 
 
Remark 1. The matrices (12) have nonnegative 
entries if and only if the coefficients 

12,...,1,0, −= nkak  of the polynomial (13) are 
nonnegative. 
 
Remark 2. The dimension  nn×  of matrices (12) is 
the smallest possible one for (8). 
 
Definition 3. A pair ( )10,AA  of square matrices 

nnR,AA ×∈10  is called cyclic if and only if its 
characteristic polynomial  
 

           
( ) [ ]

01
12

12
2

10
2det

azazaz
AzAzIzd

n
n

n

n

−−−−=

=−−=
−

−

        (14) 

 
is equal to the minimal polynomial ( )zΨ  of the pair, 

i.e. ( ) ( )zzd Ψ= . 
It is well-known that the polynomials are related by 
 

  ( ) ( )
( )zD
zdz

n 1−

=Ψ                                          (15) 

and that 
 
  ( ) ( )zdz =Ψ                                                (16) 
 
if and only if ( ) 11 =− zDn  or equivalently  
 
 )(...)()( 121 zizizi n−===                           (17) 

where ( )zDn 1−  is the greatest common divisor of all 
1−n  order minors of the matrix 

[ ]10
2 AzAzIn −− and 1,...1),( −= nkzik are the its 

monic invariant polynomials. 
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Lemma 3. Every pair of the matrices (12) is cyclic for 
any values of its parameters ka , 12,...2,1 −= nk . 
 
Proof. The details of the proof will be given only for 
the pair (12a). In the remaining cases the proof is 
similar. 
Note that the 1−n  order minor obtained by removing 
the second row and the first column of the matrix 
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⎥
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                                                                                 (18) 
is equal to 1)1( −− n . Therefore ( ) 11 =− zDn  and by 

(15) ( ) ( )zdz =Ψ .                                              ■ 
 

For any square matrices 
nnR,AA ×∈10  the inverse 

matrix [ ] 1
10

2 −
−− AzAzI n  can be written in the 

form  
 

 [ ] ( )
( )zd
zNAzAzI n =−−

−1
10

2                        (19) 

 
where ( )zN  is an nn×  polynomial matrix and 
( )zd  is a polynomial. The matrix (19) is called in the 

standard form if the matrix 
( )
( )zd

zN
 is irreducible and 

the leading coefficient of ( )zd  is equal to 1. 
 
Definition 4. The matrix (19) is called normal if and 
only if, every nonzero second order minor of the 
polynomial matrix ( )zN  is divisible (with zero 

remainder) by ( )zd . 
 
Lemma 4. The standard matrix (19) for 2≥n  is 
normal if and only if the pair ( )10,AA  is cyclic. 
 
Proof. Let the pair ( )10,AA  be cyclic. Then by 
definition 3, (16) and (17) hold and the Smith 
canonical form of [ ]10

2 AzAzI n −−  is equal to 
 
[ ] ( )[ ]zdAzAzI Sn 111diag10

2 K=−−
(20) 
The adjoint matrix to (20) is given by 
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( ) ( ) ( )[ ]1diag
Adj 10

2

zdzdzd
AzAzI Sn

=

=−−
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and every nonzero second order minor of (21) is 
divisible by ( )zd . By Binet-Cauchy theorem every 
nonzero second order minor of the matrix 
( ) [ ] ( )zUAzAzIzV Sn 10

2Adj −−  is also divisible 

by ( )zd  since it is the sum of products of second 

order minors of the unimodular matrices ( )zV , 
( )zU  and of (21). The necessity will be shown by 

contradiction. By assumption the matrix (19) is 
irreducible. If the characteristic polynomial (14) is not 
equal to the minimal one ( )zΨ , ( ) ( )zdz ≠Ψ  then 

by (15) ( ) 11 ≠− zDn  and every nonzero 1−n  order 

minor of [ ]10
2 AzAzIn −−  is divisible by 

( )zDn 1− [ ] ( ) ( )zdzDAzAzI nn 110
2det −=−−  

 and the matrix (19) is reducible. So we get a 
contradiction.   ■ 
 
Lemma 5. If the pair ( )10,AA  has the canonical form 

(12a) then the adjoint matrix [ ]10
2Adj AzAzI n −−  

can be decomposed as follows 
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∗  denotes the entries that are not important in the 
considerations. 
Similar decompositions hold for the pairs (12b), (12c) 
and (12d). 
 
Proof. The adjoint matrix has the form 
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and it can be written in the form (22) since by lemma 4 
every nonzero second order minor of (23) is divisible 
by ( )zd . It is easy to verify that (22b) satisfies (22a).  

■ 
Substitution of (22a) into (8) yields 
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where  
 

       ( ) ( ) ( ) ( )BzQzQ,zPCzP bc ==             (25) 
 
Remark 3. From (24) it follows that the positive 
realization (9) of (8) is independent of the polynomial 
matrix ( )zG  ( ( )BzGCz ). 
Using (22b) and (25) we obtain 
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From lemma 5 it follows that the strictly proper matrix 
(8) can be decomposed as follows 
 
 ( ) ( ) ( ) )()( zGzdzQzPzN +=                     (27) 
 
where 
 
( ) ( )

( )

( )
( )

( ) ( )
( )

( )
( )

][)(
01

2
2

22
22

32
32

12
12

01
2

2
22

22

32
32

12
12

zRzG

QzQzQzQ

zQzQzQ

PzPzPzP

zPzPzP

np

n
n

n
n

n
n

n
n

n
n

n
n

×

−
−

−
−

−
−

−
−

−
−

−
−

∈

+−+−+

+−=

+−+−+

+−=

        (28) 

(the set of polynomial matrices)  
 
The polynomial matrices ( )zP , ( )zQ  and ( )zG  of 
(27) can be computed by the use of the following 
procedure. 
 
Procedure 1. 
 
Step 1. Using elementary row and column operations 
perform the reduction 
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where ( )zU  and ( )zV  are unimodular matrices of 
the elementary operations,  
( )zp  is a polynomial, ],[)( )1(1 zRzr m−×∈  

( ) [ ]zRzc p 1−∈  and ].[)( )1()1( zRzM mp −×−∈  
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Step 2. Compute the matrices  
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zVzrzQ
zc

zpzUzP

11

11

0
00

1,
1

−−

−−

⎥
⎦

⎤
⎢
⎣

⎡
−

=

=⎥
⎦

⎤
⎢
⎣

⎡
=

 

 
Comparison of (26) and (28) yields 
 

    

( )

( ) ( )

( )

( ) ( ) 2012222

11232112

34221

0212322

12232212

,,

,,

,,
,,

BQBaBQ

BaQBQ
CaCaC

PCaCP
aCPCP

nnn

nnn

nn

nnn

=−=

==
−−=

=−=

==

−−

−−−

−−

−−−

           (30) 

Knowing the matrices kP  and kQ  
 for )1(2,...,1,0 −= nk  we can find from (30)  

iC  and iB , ni ,,1=  of the matrices C  and B . 

From (30) it follows that 
m

i RB ×
+∈ 1

 and 
p

i RC +∈  

for ni ,,1=  if 
p

k RP +∈ , 
m

k RQ ×
+∈ 1

 

 for )1(2,...,1,0 −= nk and 0≥ja  for 
12,...,1,0 −= nj  

 
Therefore the following theorem has been proved. 
Theorem 2. Let the transfer matrix (4) be normal. The 
positive realization problem has a solution if the 
following conditions are satisfied 
(i)    +∈=∞ ×

∞→

mp

z
RzTT )(lim)(    

(ii)    The coefficients ka , 12,...,1,0 −= nk  

         of the polynomial ( )zd  are nonnegative. 

(iii)    The polynomial matrix ( )zN  of (8) can be 

          decomposed so that the polynomial ( )zP  and 
( )zQ  (defined by (28)) have nonnegative coefficients 

matrices,  i.e. 
p

k RP +∈ , 
m

k RQ ×
+∈ 1

 
 for )1(2,...,1,0 −= nk and the relations (29) are 
satisfied. 
If the conditions of theorem are satisfied then the 
positive realization (3) of ( )zT  can be found by the 
use of the following procedure. 
 
Procedure 2. 
Step 1. Using (7) and (8) find D  and the strictly 

proper rational matrix ( )zTsp  

Step 2. Knowing the coefficients ka , 

12,...,1,0 −= nk =of 

( )zd  find the matrices (12a) (or (12b),  (12c), (12d) ) 
 

Step 3. Using procedure 1 find the decomposition (27) 
of the polynomial matrix ( )zN  of (8) and the 

coefficients matrices kP  and kQ , = of the polynomial 
matrices (28). 
 
Step 4. Using (30) find iB  and iC , ni ,,1=  and 

the matrices B  and C . 
 
Example. Find the positive realization (3) of the 
transfer matrix 
 

( )

⎥
⎦

⎤
⎢
⎣

⎡

+++−++++
−+−−++

×

−−−−−
=

zzzzzzzzz
zzzzzzz

zzzzz
zT

2342345

45345

2345

324,124610
2,24372

1232
1

                                                                             (31) 
Using the procedure 1 we obtain successively 
 
Step 1. From (7) and (8) we have 
 

                 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
==

∞→ 01
12

lim zTD
z

                   (32) 

and 

    ( ) ( ) ( )
( )zd
zNDzTzTsp =−=                (33) 

where 
( )

⎥
⎦

⎤
⎢
⎣

⎡
++++++
++++++

=

zzzzzzzz
zzzzzzz

zN

234234

234234

324,47811
1323,679 ; 

     ( ) 1232 2345 −−−−−=′ zzzzzzd  
 
Step 2. Taking into account that 00 =a , 

151 == aa , 242 == aa , 33 =a  and using (12a) 
we obtain 

     
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

210
200
100

,
100
301
000

10 AA          (34) 

 
Step 3. Using the Procedure 1 we decompose the 
matrix ( )zN  in the form (27) with 
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( )

( ) [ ]
[ ] [ ] [ ]
[ ] [ ]

( ) ⎥
⎦

⎤
⎢
⎣

⎡

−−+−
−−+−

=

+−+−=

=+−
++−=

=+−+−=

+−+−=⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+

+⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

+−
+−

=

14
13

1003
110101

13

0
1

1
0

1
1

1
11

2

2

01
2

2
3

3
4

4

234

2234

01
2

2
3

3
4

4
2

34
234

34

zz
zz

zG

QzQzQzQzQ
z

zzz
zzzzzzQ

PzPzPzPzPz

zz
zzz

zz
zP

(35) 

 
Step 4. Using (30) and (35) we obtain 
 

[ ] [ ]
[ ]13

,12,01

4423

420241

=+=
=+===

QaQB
QaQBQB

 

                                                                           (36a)         

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

13
12
01

3

2

1

B
B
B

B  

and 

          

⎥
⎦

⎤
⎢
⎣

⎡
=+=

⎥
⎦

⎤
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡
==

3
2

,
1
1

,
0
1

4423

4201

PaPC

PCPC

 

                                                                           (36b) 

         [ ] ⎥
⎦

⎤
⎢
⎣

⎡
==

310
211

321 CCCC  

 
The desired positive minimal realization of (31) has 
the form (34), (36) and (32). 
 

IV. CONCLUDING REMARKS 
The realization problem for positive multivariable 
discrete-time systems with one time-delay has been 
formulated and solved. Canonical forms (12) of the 
system matrices 0A  and 1A  have been introduced. It 
has been shown that the pair (12) is cyclic. Conditions 
for the existence of positive minimal realization (3) of 
a proper rational matrix ( )zT  have been established. 
A procedure for computation of a minimal positive 
realization of proper rational matrix has been 
presented and illustrated by an example. The 
considerations can be extended for multivariable 
discrete-time linear systems with many time-delays. 
An extension of the considerations for continuous-
time linear systems with time-delays is also possible. 
 
 
 

REFERENCES 
 
[1] L. Benvenuti and L. Farina, “A tutorial on the positive 
realization problem”, IEEE Trans. Autom. Control, 2003 (in press) 
[2] M. Busłowicz, “Explicit solution of discretedelay equations”, 
Foundations of Control  Engineering, vol. 7, No. 2, 1982, pp. 67-71 
[3] M. Busłowicz and T. Kaczorek, “Reachability and minimum 
energy control of positive lin       ear discrete-time systems with one 
delay”, 12th Mediterranean Conference on Control and Automation, 
June 6-9, 2004, Kasadasi,        Izmir, Turkey (in press) 
[4] L. Farina and S. Rinaldi, “Positive Linear  Systems”; Theory 
and Applications, J. Wiley,  New York, 2000 
[5] T. Kaczorek, “Positive 1D and 2D Systems”, Springer-Verlag, 
London 2002 
[6]  T. Kaczorek, “Some recent developments in  positive 
systems”, Proc. 7th Conference of  Dynamical Systems Theory and 
Applications,        pp. 25-35, Łódź 2003.  
[7] G. Xie, L. Wang, “Reachability and controllability of positive 
linear discrete-time systems with time-delays”, in L. Benvenuti, A. 
     De Santis and L. Farina (eds): Positive Systems, LNCIS 294, 
Springer-Verlag, Berlin   2003, pp. 377-384. 


