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Abstract — The adaptive algorithm of numerical
integration of systems of the ordinary differential
equations is considered. The results of numerical
experiments are resulted.

[. INTRODUCTION

he occurrence of idea about adaptive algorithms of

numerical simulation of dynamic systems is

closely connected to concept of a stiffness of the
task. The application of an explicit method for the stiff
problem, as also implicit for non stiff requires
significant computing expenses.

At construction of adaptive algorithms of
numerical integration it is possible conditionally to
select two directions. In algorithms of the first
direction depending on a degree of a stiffness of a
interval of the process, which is calculated, the explicit
or implicit formulas of numerical integration are
applied. A classical representative of this direction is
the program LSODA from the package ODEPAC,
which on stiff interval uses methods BDF, and on not
hard - explicit methods of Adams [1]. Let's note, that
at such approach there is a number of difficulties
connected to usage of diverse algorithms, in particular
there is a possibility of appearance of instability on
those intervals, where the explicit method in the event
that a control of a local error insufficiently strict is
applied.

The second group of algorithms is based on idea
L.F. Shampine [2,3]. In this case implicit formulas of
numerical integration are used. However on nonstiff
intervals the solution of the nonlinear algebraic
equations instead of a method of Newton, the method
of simple iteration is applied which allows essentially
to reduce computing expenses. The advantages of such
approach are obvious: the problem of stability of the
numerical method is completely removed, the
estimation of local and global errors (and consequently
also choice of a new step and a method of integration)
occurs on the same procedures during all process of
integration. In further the second group of algorithms
is discussed.

II. BASES or ADAPTIVE ALGORITHM

Let's consider mathematical model of the dynamic
system as the ordinary differential equations:

x=f(xt), teltg.tanl, X(to)=%Xp, (1)
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where xe R", f: R L, RM,

Let for numerical integration of the equation (1)
the method BDF of k-th order is used:

k

. 1
Xm+1=_ﬁzaixm+1—i, 0<k<6. (2)
i=0

Discrete model of the system (1) at application of a
method (2) can be represented as:

h
Xmil = —%f (Xm1stmer)+d, m=0,12,..,(3)

k
1 .
where d = _anixm”‘i - vector, which does not
i=l
depend from Xy
The equation (3) is usually solved on each step by
a method of Newton or its modification. On this
procedure a main volume of computing expenses are
wasted.
Let's write a method of simple iteration for solution
of the equation (2):

4 —alf (xim,tmﬂ)m, i=0,1,2,.. (4)
0

X

The method (4) locally converges to solution
Xm+1, if in some vicinity of this solution containing

initial approximation x?  condition:

m+1°

%”f,(xmﬂatmﬂ )" <q<l, 5)

is satisfied, where |||| - any matrix norm. It is clear,

that at good convergence of a method of simple
iteration the computing expenses on one step will be
close to expenses, which arise at usage for numerical
integration of the system (1) explicit methods.

For support of satisfactory convergence of a
method of simple iteration the value of g should not
exceed 0,5, that usually takes place on non stiff
intervals of an integral curve owing to small values of
step h. Therefore condition (5) at  <0,5 can be

used for criterion of transition from a method of
Newton to a method of simple iteration [3].

The hard limitations on convergence of a method
of simple iteration reduce efficiency of similar
algorithms a little. Therefore in [4] it is offered at
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solution of the system (5) to apply a method of the
generalized iteration:

i+l i
Xm+1 _Xm+1

h .
—f (X:TH_l,tm_H)—dj,

-D xi +
(m+l a

i=0,1,2,.., (6)

from which the matrix D is selected so that the
iterative procedure (6) converged at the large values of
step h, than method of simple iteration. The
elementary case, if D= g1, rne £ - some scalar, | —

unit matrix. Then:

i+1 i h (.
Xme1 = A=A _'B(%f (Xm+1’tm+1)_dja %)
i=0,1,2,...

At =1 we have a method of simple iteration (4).

For the extension of area of convergence of a method
(7) in comparison with a method of simple iteration it

is necessary to keep a condition: | ﬂ| <1 [4]. Where
decreases £ the convergence domain increases, but

the speed of convergence becomes unsufficient.
Therefore optimal choice of values qu f has the

large significance for effective operation of adaptive
algorithm.

III. NUMERICAL EXPERIMENTS

The results of numerical experiments are given
below in which there were compared the speed of
three programs of numerical integration of the
ordinary differential equations: BDFR, BDFRA and
RKDP54.

On a basis of programs BDFR and BDFRA the
variant of a method BDF with differences of the
maximum orders and effective procedures of choice of
an integration step and about a method from 1-st up to
6-th. In the program BDFR the system of the nonlinear
equations (2) on each step is solved by a method of
Newton. In programs BDFRA on non stiff intervals
for this purpose was used a method (7). The transition
from a method of Newton to a method (7) (i.e.
definition of a non stiff intervals of a trajectory)
occurs at execution of criterion (5). The return
transition to a method of Newton is carried out when
the method (7) does not converge for three iterations.
The program RKDP54 is based on methods of Runge-
Kutta 5-4 orders in formulation of Dorman-Prince. In
opinion of the experts this method is the best for the
problems with a small and average degree of a
stiffness, if the low accuracy of calculation (107-10)
is necessary [5].

The comparison was carried out on the nonlinear
system of 20 order, which consists of 10 uncoupled
equations of Van-der-Pol:

Xi = Xj41 ®

it = (1 ) X1 =%, 1=2(-1, j=110
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It is known that equation of Van-der-Pol is one of
the most successful tests for check of practical
algorithms. With the help of the parameter & it is
possible easily to change a stiffness of the system.
Besides the eigenvalues of a matrix Jacobi along
solution vary in very wide ranges, passing from real to
complex and contrary.

The system (8) was integrated on a interval
[0,tn ] from the initial conditions

X (0)=2, xi41(0)=0

tfin - The boundary of a local error of discretization on

at different values ¢ and

step for all programs was equal 10™. The accuracy of
solution of the equations (2) for programs BDFR and
BDFRA was equal to 10”. In the program BDFRA for
criterion (3) it was necessary =0,4. . The calculation
were carried out on the personal computer with low
speed, that the run time was appreciable. The results of
numerical experiments are given in the table.

Run time (s)
The program | =1, | £=20, | £=50, | £ =100,
tin=20 | tfin=40 | tfin=100| tfin=200
BDFR 111,98 98,47 109,80 122,43
BDFRA (R=1) 26,25 47,51 62,18 72,17
BDFRA (R=0,7) 27,78 43,67 52,61 61,79
RKDP54 6,98 36,86 179,44] 716,87

IV. CONCLUSIONS

As the results of numerical experiments adaptive
algorithms at all degrees of a stiffness of the problem
work much faster, than classical implicit methods, and
at small and average stiffness can successfully
compete with explicit methods.
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