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The theory and practice of modeling of
autonomous systems with a given domain of
convergence
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Abstract-- Theoretical substantiation of a method for
providing the convergence of a solution of mathematical
model of an independent system to a given solution with
the help of the second method of Lyapunov is considered.
The method is illustrated by model of the self-oscillator,
for which the conditions of "soft" excitation of
oscillations are provided.
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THEORETICAL SUBSTANTIATION

ET mathematical model of an autonomous system
I is given as a system of the differential equations

dy,/dt = y,;

dyz/d[=J’3; 1)

Ay, [dt = (Vs Y2505 9,5@);
where the nonlinear function f(Y;a) is continuous,

Y:(yla Y25eees yn)a
parameters.

It is shown in [1], that the system (1) models the
wide class of systems with concentrated stationary
values by parameters.

Some vector

Y(0) =, (0),5,(0),....»,@);  te,,T) is
Then the task of identification of mathematical model
(1), which solution is close to a given vector function,
looks like:

- _ dy
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and the vector a@ contains

function
given.
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If we approximate f(Y;a)in a linear Euclidean

space of basis functions ¢, Y (1)), i= 1,m , then there
exists a unique solution of the identification task

~ 2
t
min | [Zaqﬂl(Y(t)) y;( )j dt . 3)
t

In practice the continuous task (3) is substituted by
a discrete one owing to digitization of a continuous set
(t05T): -
te(t, Tyt <t <T; k=1,K.

Hence the discrete task of identification is the
following:
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The solution of the discretized task (4) is
equivalent to a solution in the quadratic metric of a
rectangular system of the linear algebraic equations in
relation to a vector of approximating coefficients a

Za%WUD y“)

The solution (5) always exists and it is unique.

The tasks of identification (2) - (5) are incorrect. It
is expressed by the fact that their solutions
unacceptably strong depend on errors y,(¢#) and from

k=1,K. Q)

calculation errors. As the result, solution of a system

(1) can be somehow far from a given vector Y (¢) .
Regularization according Tihonov together with a

method of reduction of an approximating polynomial

[2], [3] (combined regularization) ensures a
correctness of the task of identification. However

domain of convergence to a solution Y(f) can be too
small. Really, the identifications (2) - (5) control the
behavior of the approximated function only along a
trajectory Y(¢) in a phase space.

Using the ideas of the second method of Lyapunov
it is possible to set a desirable domain of convergence
of a system solution (1).

Let construct such Lyapunov function in relation to
aberrations of a solution Y(¢) of a system (1) from a

given vector Y(¢), that it will be positive in the

necessary area, excepting Y (H=Y() points, where it
is equal to zero [4].
The choice of the Lyapunov function is very

complex task in the case of searching for a stability
region of a system [4]. In our case a stability region

(that is the domain of convergence to a solution Y(1))

is not determined, but it is set. Therefore choice of the
Lyapunov function is much easier. A satisfactory
sample of such function - incomplete quadratic shape:

wm:ﬁ@ﬂ%ﬁmf. ©)

At such Lyapunov function the domain of
convergence can include all phase space.

For Y(¢) convergence to Y(¢) in some area Q of a

phase space of a system (1) it is enough, that
derivative of a Lyapunov function (6) according to
equation of motion (1) will be negative in this area,
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excepting Y(¢)=Y(¢) points, where it should be zero
[4]:

ZaV(Y).ﬂd) npu Y eQ; (7
o Oy dt
STD Dy y=7 . (8)
o) dt

The condition (8) for the function (6) is met always.
Let calculate the left part of an inequality (7)
taking into account (6) and (1):

S (540 5.(0) 30 () +
5 ) N

+(»,O-5,0) fY.@) < 0

The condition (9) in discrete variant looks like:
-1
Z(y; )— ¥, )) V) +
=l (10)

+ yn(tk)_}n(tk))'f(Y(tk)’a)Y(tf)sQO;

From inequalities (10) it is possible to obtain the
algebraic equations, which are convenient for
supplement of the identification system (5). For this
purpose we select such function f(Y), that f(¥)<0 at
YeQ and A(Y)—0 at Y—Y. An example is the
Lyapunov function (6) with negative sign:

)= —Z(y[(o—f,-(t))z : (11)

Having equated the left parts of inequalities (10) to
the function (11), we obtain a system of equations,
which is equivalent to the system of inequalities (10)
in sense of our task:

3

(040 3:0)) a0+ (7,005,

SX(@)a)=pX (), Y()eQ

Let solve the obtained equations in relation to the

approximated function f(Y(¢,),a) = Zm: ap,(Y(t,)):
\ BEG) D (3,0)-5,0)) 3,46
o)) = il _
20000, 5, 35,0
(12)

The equations (12) have the same structure as
equation (5). The mutual solution of the equations (5)
and (12) provides the extension of a domain of
convergence to a given solution.

It is necessary to select those points Y(#) inside
area Q, in which we should control the convergence of
a solution Y(¢) of the system (1) to a given solution

Y(r). The more such points, the more reliably

convergence to a given solution in area Q is
guaranteed, but the quality of approximation (5) is
declined in this case. It is also necessary to avoid
points near a trajectory Y(f) or on it. Then the
conditionality of an aggregate algebraic system
consisting of the equations (5) and (12) will not be
declined.
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EXAMPLE OF THE METHOD USAGE

The inspection of the explained method on a test
example of the self-oscillator has shown reliable
convergence of a solution of mathematical model to a
given solution inside the selected area.

With the use of the method of inverse linear
subsystem [1] and combined method of regularization
[2], [3] the mathematical model of the self-oscillator as
a system of two differential equations with the
nonlinear function is constructed. The equations of
model are as follows:

{dyl/dﬁyz;
dyZ/dt :wz(f(ylayz)_yl);

5
Sy = ayys; i+j<5.

i,j=0
(13)
In a fig.] a circuit of the self-oscillator and
equivalent circuit of its mathematical model (13) are
shown.

wk  The Self-oscillator

wl _-_ 4
10] wNFT W"ﬂ— mﬁl'

5

12
Its mathematical model ® NFW
i 10
(

1
11
= 228Be14* W12V VI10)

POLY(Z) 110100 3.8410e-001 1.6619¢-001 0.0000e+000 0.0000e+000-1.05442-007 0.0000e+000 0.00002+000
0.0000e+000 0.0000e+000 0.0000e+000 0.00002+000 0.00002+000 0.0000e+000 1.2348e-019 3.1145e-026
0.0000e+000 55367e-008 0.0000e+000 0.0000e+000-7 BA98e-026 -1 1358e-032 kd  alfa=0.05

POLY(2) 110100 1.2449e-001 1.0367e+000-37232e-008 0.0000e+000 1.0331e-007 0.0000e+000 0.0000e+000

0.0000e+000 2.7274e-014 0.0000e+000-2.0082e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.00002+000
0.0000e+000 0.00008+000-4.4106e-013 0.0000e+000 5.6147e-027 -4.9596e-034 kdlap alfa=003

Fig. 1. The self-oscillator and its mathematical model described

for MicroCap-5. . .
The dlf%érentlal equations of model (13) are

presented in a fig. 1 by two integrating links from
linear controlled current sources NF and capacities 1F.
State variables y1 and y2 are the voltages of nodes 11
and 10. The nonlinear function f{y,,»,) is a fifth degree
polynomial of two state variables, this function is
presented by controlled voltage source E.

Two variants of the nonlinear polynomial function,
shown in a fig. 1, correspond to:

— method of a combined regularization ("Kd");

— method of a combined regularization with the use of
the second Lyapunov method ("KdLap").

Output signals of the generator and model are
voltage on capacitor 10p and voltage of the 11 node.
In fig.2 the output signals of the generator and model
with the first variant of the nonlinear function are
shown.
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Fig. 2. Output signals of the generator and model

The analogs of the equations (5) for model (13),
using which the identification of the first variant of the
nonlinear function is realized, look like:

S df(rk)j" I’5), o -
a. y(t = [~ + y(t,);
i;() iV (k)( dt e (&) :
i+j<5 @ =2256,14; k=1,400
where y(z,) is reading of an output signal of the

(14)

generator in a fig.2 in k-th time moment.

In a fig.3 boundary cycle of oscillations of the self-
oscillator on a phase plane in coordinates of output
signal and its derivative is shown. The points of the
starting conditions of model with the first variant of
nonlinearity, at which the integral of model converges
to boundary cycle, are presented also.
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Fig. 3. Points — model starting conditions, at which the transient

process converges to given boundary cycle. In area Q the oscillations

dafP 5 fig 3 it is visible, that for model with the first
variant of nonlinearity (obtained by combined method
of a regularization) there exists area of the starting
conditions, at which the transient process of model
damps and does not reconstruct the given output signal
of the generator. It corresponds to the so-called "rigid"
condition of excitation of oscillations.

Let it is necessary to generate model, which will
not have indicated area, which meets the conditions of
"soft" excitation. This task we shall solve with the help
of a circumscribed above method.

Let construct the Lyapunov function according (6)
for boundary cycle in fig.3 with normalized derivative.
This function is shown in fig.4.
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The analogs of the equations (12) for model (13),
which supplement the system (14) for providing the
condition of "soft" excitation, are written as:

> a0 =010 -0 ) -F ) -

(i0)-570) 30 [0 -FC ) ver

15)
where (3,(¢,),dy,(¢,)/dt) - point of boundary cycle

which is the nearest to a point ( ,(¢,), »,(#,) )-
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Fig. 4. The surface corresponding to Lyapunov function (6). The marked

points are the ones, in which additional equations (15) for "soft"
excitation of oscillations are composed

In a fig.4 the points of a phase plane are marked, in
which the additional equations (15), providing a
condition of "soft" excitation of oscillations, are
composed according to the explained method.

By mutual solution of 400 basic equations (14) and
11 additional equations (15) we have found the
coefficients of the nonlinear function shown in the
second variant in fig.1 ("KdLap"). The model with
such nonlinear function has no interior area of the
starting conditions, for which the periodic regime is
not excited, that is corresponds to the generator with
"soft" excitation.
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