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Abstract — A general technique for analysis of a
stationary magnetic field through the application of
three-dimensional invariant algebraic analogies of rotor-
operator is being presented.
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[. INTRODUCTION

n apparatus of invariant approximations of

functions has been presented in [1]. The

apparatus has been used for computation of two-
dimensional electro-magnetic fields [2], [3]. However,
the issue of applying the apparatus to analysis of 3-D
problems stays actual. The presented paper deals with
simulation of a 3-D stationary magnetic field based on
implementation of the apparatus of invariant
approximations of functions.

II. BASIC CONCEPTS

Let us consider a domain G, confined by a
boundary /°. A mathematical model of a boundary
problem of stationary magnetic field analysis may be
introduced by the following system of differential
equations

B[F] =rotA[F]; (FeGuUT) (1)
rotH[F] =J[F]; (reG) )
B[F]=B[H[F].7]; (FeGUT) (3)
A[T]=4r[T], (rel) )
where B[F],H[F],A[F] are induction of

magnetic field, magnetic tension, and vector magnetic
potential, respectively, as sought vector functions of
radius-vector 7 of a point located inside G or on its

boundary 77; Z_?[ H ] describes a main curve of

magnetization of a substance filling the domain G ; to
emphasize the fact that different areas of the domain
may have different magnetic properties the second
independent variable 7 was included into the right
part of (3); Zr [7r] is vector magnetic potential as a
given vector function of radius-vector 7 of a point
located on boundary I'; J/7] is electrical current
density as a given vector function of radius-vector 7
of a point located inside G .

Let us place a grid within the domain G and extend
it outside the domain. A principle of the grid
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configuration is following. Let us begin with nodes
located on x -axis with an equal interval A, between

adjacent ones and forming a straight line with space
coordinates y =0,z =0. Therefore, 3-D coordinates

of the first line’s nodes are (0,00), (4,.00),
(2h,00), ... ,(=h,00),(-2h.0,0), ... The second
nodal line with space coordinates y=h,,z=0 and
the third nodal line with space coordinates y =0,

z =h, go in parallel with the first one, but are moved
in x -direction for 4, /2. Therefore, X -coordinates
of those lines’ nodes are fractions of %, . In general,

every new nodal line that is shifted from the old one
for one step in ) - or z -direction is also displaced in

X -direction for /s, /2 in comparison with the old

one. After the grid is completed, let us build a minimal
encompassing polyhedron in accordance with the rule
set forth in [2]. For every external node a
corresponding boundary node is being chosen. If a
distance between two nodes is less than 0.14,,;,, one
of them is excluded to avoid singularity of Taylor’s
matrix. In summary, we have M nodes, among them

K internal nodes and Z boundary nodes.

Let us tie to every m -th (m :L_M) node a sole
P -nodal set of the n-th order (where P=
=(n+3)!/(n!3!)) as shown in [1]. We assume that

the grid’s step is sufficiently little to represent sought
variables within a set with Taylor’s polynomial of the
n -th power. For every set a double numeration has
being introduced where the first part of it constitutes
the number of a basic node in a nodal numbering and
the second part constitutes a local number of a node
inside the set. Accordingly to the apparatus of
invariant approximations of functions [1] an algebraic
analogy of the concerned boundary problem can be
written down as

B, =Ry, xA, (m=I,M ) (5)

Ry, xH, =7,  (m=LK) (6)

B,=B,[H,]; (m=1,M) ()
A=C;Ag +CrAr, )

where Ry, is an algebraic analogy of Hamilton’s
operator for the basic node of the m -th set;
Am:(Aml""AmP)t’ Hm:(Hmll""HmP)t are
nodal columns of vector magnetic potential and
magnetic tension for the m -th set, respectively;

A=(dy Ay )y Ag=(dy..Ag); A
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=(Ag,1,.s Ay )y; Cg is a (K xM ) -size matrix
consisting of two blocks: the first one is a (K xK ) -
size unit matrix and the second one is a (K x Z ) -size
Cr is (ZxM)-size
matrix consisting of two blocks: the first one is a
(ZxK )-size matrix with zero elements and the

matrix with zero elements;

second one is a (ZxZ )-size unit matrix. The system
(5)-(8) is nonlinear due to the nonlinearity of the
relation (7).

Taking onto account that B, =iB,, + jB,, +

+kB,,, H,

m

=iH,, +jH,, +kH_,, 4,6 =id,+

m xm

+jA,, +k4,,, Ry, =iR,, +jR,, +kR_, (where

R, R, R

ym> N zm
z— derivatives for the basic node of the m -th set),
the system (5)-(8) can be rewritten in such a way

ym

are algebraic analogies of x—, y—,

xm?’

B, =R, A, ~R,A . (m=1M)
By = RzmAxm - RxmAzm; (m = LM)
B, =R A R oA L (m=1M)
RymHzm_RzmHym:Jxm; (mII,K)
Rzmem_Rmezm:‘]ym; (mZL_K)
Rmeym _Rymem :sz; (m=1LK)
me:me|:\/Hfm+H}2,m+szm:|; (m:L_M)
Bym:Bym|:\/Hfm+H§m+szm:|; (m:l,M)
Bzm :Bzm|:\/H§m+H)2)m+szm:|; (mZL_M)

AX :CGAXG +CFAXF;

A, =CeA,6 +CrA .,

Az =CGAZG +CrAzr- (9)

For getting an algebraic analogy of Hamilton’s
operator, sets of the 4th order have been used. In that
case we have P =35 nodes in a set. Within the set,
vector potential may be approximated by the
expression

A=a, +ax+ay+a,z+asx> /2+...

€))
In that case we shall obtain approximation error of the
4th order for analogies of the first grade differential
operators (grad, div, rot) and approximation error of
the 3rd order for analogies of the second grade
differential operators (i.e. A). The rule of forming sets
for every basic node repeats the rule of forming a
Taylor’s row [2]. Sets with exclusively internal nodes
were marked as “strictly internal”; sets with a basic
node that belonged to the boundary were marked as
“boundary”; the others were marked as “adjacent” [3].
For computation of algebraic analogies a local
coordinate system (that is a system whose zero point
coincides with a basic node) was introduced. The

+ayyz° /34ayszt /4l
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nodal coordinates of a typical strictly internal set are
being presented in Table 1.

TABLE 1.

COORDINATES OF A STRICTLY INTERNAL SET IN THE
LOCAL COORDINATE SYSTEMFOR /i, =h, =h, =h

# 1 2 3 4 5 6 7 8 9
X 0 h 0.5 0.5 -h 1.5 1.5 0.5 0
h h h h h
y 0 0 h 0 0 h 0 -h h
z 0 0 0 h 0 0 h 0 h
10 11 12 13 14 15 16
0.5h 2h -0.5h -0.5h 1.5h H 1.5h
0 0 h 0 -h h 0
-h 0 0 h 0 h -h
17 18 19 20 21 22 23
0 0 0 0 -2h -1.5h -1.5h
2h -h h 0 0 h 0
h h -h 2h 0 0 h
24 25 26 27 28 29 30
-0.5h -h -0.5h h h h h
-h h 0 0 -h H 0
0 h -h 2h h -h 2h
31 32 33 34 35
0 0.5h 0 0.5h 0
-2h 2h -h h 0
0 h -h 2h -2h

Since nodes do not belong to a surface of the 4-th
order, Taylor’s matrix [2] for the said set is
nonsingular. Having computed the inverse Taylor’s
matrix, we can use (as shown in [1]) following
expressions for algebraic analogies of
x—, y—,z — derivatives
Rx :Tz,'Ry :T3”RZ :T4,
where T,,T;, T, are the second, third and fourth

rows of the inverse Taylor’s matrix calculated in the
local coordinate system.

The system (9) was being solved by means of
Newton’s method. Therefore, elements of Jacobi’s
matrix included magnitudes of differential magnetic
permeability of a substance filling the domain.

III. CONCLUSION

A technique for analysis of a stationary magnetic
field by means of application of three-dimensional
algebraic analogies of rotor-operator has been
presented.
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