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 Abstract — Electroencephalography (EEG) is a non-
invasive method of the brain activity. The principal goal 
of EEG is to relate measured scalp potentials to current 
sources generated in brain tissue. In some applications 
e.g. focal epilepsy, localization of the sources is desired. 
To solve this problem the Boundary Element Method is 
used to create the numerical model of the object under 
consideration. Using synthetic data the inverse (linear in 
case of EEG) problem will be solved for 2D and 3D 
space. 

I.  INTRODUCTION 
he Electroencephalography (EEG) can be used to 
measure scalp surface potentials. Inverse 
procedures in EEG are used to estimate the spatial 

distribution of the underlying, possibly focal, neural 
sources. 

The equivalent current dipoles, and clusters of 
such dipoles, are a widely used source model for 
representing focal neural activity. For this model the 
inverse procedure must estimate the locations and 
amplitudes of the equivalent dipoles. 

EEG problems are similar to the Electric 
Impedance Tomography (EIT) problems. However 
there is one exception. In EIT the object under 
investigation is excited by an external current or 
voltage source, when in EEG we assume that the 
exciting source is internal one. Consequence of this is 
less data which could be collected from the surface. 
To compare in EIT for 16 electrodes and 8 projection 
angles we have (16-3)*8=104 linearly independent 
measurements [8], but in EEG for the same number 
electrodes we have only 16 measurements. Assuming 
homogeneity of the region under consideration, the 
governing equation is a Poisson’s equation with the 
Neumann boundary conditions: 
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where:  u – electric potential,  b – internal sources, 
rr –  position vektor 

The Inverse Problem in EEG is looking for the 
localization of the dipoles inside of the region that is 
why the BEM method is superior over the FEM due to 
the lack of the internal mesh and troubles with 
modeling the dipoles. That is why more convenient 
mathematical model based on integral formulation of 
Eq.(1) with boundary conditions Eq.(2) was used. 
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In BEM the dipoles are modeled by concentrated 
sources. They are a special case for which the function 
b  at the internal point 0r

r
 becomes )( 000 rQq

r
δ= , 

where 0Q  is the magnitude of the source and )( 0r
r

δ  is 
a Dirac delta function whose integral is equal to 1 over 
any volume containing the singularity point 0r  and 
equal to zero elsewhere. Assuming that inside of the 
region we have n dipoles one can write: 

 

( )∑

∫

∫

=
−−++

Γ

Γ

−+

+Γ
∂

∂
=

=Γ
∂
∂

+

n

i
iiii rrGqrrGq

drrG
n
ru

drurrG
n

ru

1

'
,0,0

'
,0,0

'
'

''

),(),(

),()(

)(),()(
2
1

rrrr

rr
r

rrrr

 
(4) 

where +0r
r

 and −0r
r

 are the positions of the charges 

0q+  and 0q−  respectively. 

In 2D space Eq.(5a) and for 3D space Eq.(5b), the 
fundamental solutions of the Eq.(1) are expressed by 
the Green’s functions [2, 3]: 
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In order to solve the forward problem described by 
Eq.(4) the BEM was used with zero order boundary 
elements [2, 3]. 

The matrix form of Eq.(4) is:  

 })({})({})({ pQpBqpAu +=  (7) 

Taking into account the boundary conditions 
(Eq.(2)) Eq.(7) is reduced to: 

 })({})({ pQpAu =  (8) 

The matrix A is non-symmetric and fully 
populated.  
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II. OBJECTIVE FUNCTION DEFINITION 
EEG Inverse Problem as was mentioned before is 

looking for the position and the amplitude of the 
internal sources simulated by dipoles. Those internal 
sources generate potential on the surface of the object, 
which in this particular case is the human head. To 
start with we begin with a simplified 2D model 
representing the cross section of the real object. So we 
are looking for such position of the sources for which 
the potential distribution is as close as possible to the 
synthetic data we are calling the “measurements”. The 
inverse problem is formulated as an optimization task 
and the objective function was formulated (see Eq.(9)) 
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where
: 

{uc} – electric potentials (on the boundary)  
depending on the dipole parameters  
defined by the vector {p},  

{ub} – measured (or synthetic) potentials on 

 the boundary, 

x1, y1 – coordinates of the first charge 

x2, y2 – coordinates of the second charge 

q  – quantity of the charge 

Assuming the arbitrary position of the dipoles (for 
example the number of dipoles is a prior knowledge 
about our problem, which help us to select the correct 
solution from the admissible solution’s space) and 
iteratively we are solving the forward EEG problem 
checking the value of the objective function and 
changing the sources position to get potential 
distribution as close as possible to the 
“measurements”. In order to update the vector {p}, the 
BFGS formula was used. 

When we are looking for more than one dipole 
than our problem became ill posed and the prior 
knowledge (which is problem dependant) is necessary 
for the correct solutions. 

III. SENSITIVITY ANALYSIS 
The main task of Sensitivity Analysis is to 

calculate the gradient of the objective function 
providing the information about direction of 
improvement in order to update the unknown vector. 
Direction of improvement Eq.(11) depends on 
objective function sensitivity with respect to unknown 
vector according BFGS formula [1]. 
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where
: 

k – number of iterations,  

pi – i-th component of unknown vector 

∆i – direction of improvement of variable pi 

Differentiating Eq.(8) with respect of i-th component 
of unknown vector we will get the updating formula 
expressed by Eq.(14). 
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There are two ways of calculating gradient of the 

Objective Function: using numerical approach or 
using the analytical approach. The first way is simple 
for implementation but ineffective when number of 
unknown parameters became large. Analytical 
approach is more complicated for implementation but 
is fast and more precise. Precision of the solution is 
particularly important for EEG. 

A. Numerical approach 
In order to calculate the direction of improvement 

we need to calculate the potential sensitivities with 
respect to each component of the unknown vector (see 
Eq.(14)). Derivatives are replaced by central 
differences as it is shown in Eq.(15): 
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This approach is rather time consuming even in 
case when vector }{ kp  is small. To get this results we 
have to solve the whole problem for unperturbed 
parameters and next twice for each element of 
perturbed vector }{ k

ip . The value of perturbation is 
problem dependent. In order to get as good results as 
possible the values of perturbation were determined by 
numerical experiment. The best results were achieved 
for the perturbation equal to 0.1% of the value of 
relevant parameter. 
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B. Analytical approach 
So called analytical method rely on differentiation 

of state equation Eq.(8). 
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Due to the fact that matrix A is not dependent on 
vector parameter’s, Eq.(17) could be expressed as 
follows: 
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Solution of Eq.(18) will provide the values needed for 
direction of improvement calculation. In order to solve 
Eq.(18) we need to differentiate analytically the right 
hand side in the following way: 
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This method is much faster and much more precise as 
we will see in the next section. 

IV. RESULTS OF NUMERICAL EXPERIMENTS 
Numerical experiments of localization of dipole 

modeled by two point sources were carried out for the 
synthetic data. To avoid so called “inverse crime” the 
“measurements” were calculated with the aid of BEM 
but for different discretization than this one used for 
the Inverse Problem solution.  

Two kind of numerical simulation were carried 
out: for 2D region (circle) and for 3D one (sphere). 

In case of 2D space the three dipoles localization 
problem was solved and results are shown in Fig.1. As 
we can see in Fig.1, for unpolluted data -
“measurements” the localization is perfect.  
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Fig. 1. Three dipoles position reconstruction in case of synthetic 
pollution free data  

The second example for 3D space is localization of 
one dipole placed inside of the sphere. Using the 

Boundary Element method [3] as the forward problem 
solver, results of calculation for the starting position 
are presented in Fig.2. 

 
Fig. 2. Potential distribution on the sphere and one dipole starting 
position inside of the region. 

Using this forward solver the Inverse Problem was 
formulated and preliminary results of the solution are 
shown in Fig.3. The expecting position of the dipole 
was (0, 0, 19) for negative charge and (0, 0, 20) for 
positive charge. All dimensions are in centimeters. 
The optimization process was terminated on the 
following positions (5.3, 5.3, 16.1) for negative and 
(7.3, 7.3, 17.5) for negative charge respectively. So the 
relative error of one dipole localization is equal to 
20%. 
 

 

Fig. 3 Expected (black) and achieved (white) position of the dipole 
inside of the sphere of radius 25cm. 
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V.   FUTURE WORK 
The future work will be concentrated on the 

solution of the inverse problem based on the measured 
data collected from 2D and 3D phantoms. The bottom 
hemisphere of the 3D phantom with the semi-rigid 
coaxial cable as a model of the dipole is shown in 
Fig.4. 

 

 
Fig. 4. Example of the 3D phantom with the set of electrodes. 

 

The construction of the dipole is presented in 
Fig.5. 

 

 
Fig. 5. Dimensions of the stainless steel coax and outer sheath used 
to generate the dipolar sources. 

 

VI. CONCLUSION 
In this paper, the Boundary Element Method 

applied to the forward problem of localization of the 
dipoles was shown. The forward problem coupled 
with the Variable Metric Method allows us to solve 
efficiently the Inverse Problem. Reported results 
concern the localization in 2D space of three dipoles, 
prove that proposed algorithm is efficient and provide 
the reliable and precise results. 

Results of the forward problem for the 3D space 
are very promising regarding the applications in the 
Inverse algorithm. 

In the future, our work will be concentrated on the 
Inverse Problem with the measurement collected from 
the phantom and expansion in 3D space with more 
realistic model of the human head. 
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