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Abstract— The paper presents an hybrid approach
to the forward problems important for Optical and
Impedance Tomography. New formulation for the
FEM is introduced in order to implement continuity
and equilibrium conditions on the interface between
BE and FE sub-regions. Selected 2D example re-
sults indicate some interesting tendency from the
OT or EIT point of view.

I. INTRODUCTION

There is a lot of discussion about the advantages
and disadvantages of the BE method when com-
pared to the FE one. Clearly there are certain
applications where one technique is more suitable
than the other. But for optical or impedance to-
mography problems combining both techniques in
the same computer program, would be the most
efficient way of modeling the human head. One
could mentioned such a problems as the light point
sources, scull or the void regions which could be
treated by this technique, for example.

In order to take advantage of FEM and BEM,
their coupling has been investigated extensively in
several engineering fields, such as geomechanics [2],
[3], solid mechanics [11], fracture mechanics [1] and
electromagnetics [4], [8], [10], [6], [5]

There are several different method of coupling
BEM and FEM [9], [8], [4]- The methods discussed
in this paper are limited to the direct coupling of
the BE and FE matrices when the boundary con-
ditions on the interface between two subregions are
imposed.

II. FEM-BEM COUPLING

This problem is closely related to the multi—
region problem of the BE method such as presented
in Fig. 1. The multi-region analysis has to fulfill
continuity conditions along the interface line I'; be-
tween €1 and (5 regions. This results in the fol-
lowing two relationships
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Let the sub-region (2; be discretised by the Finite
Elements and the Q5 by the Boundary Elements.
Along the common interface, two conditions must
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Fig. 1.

The multi-region analysis

be satisfied Eq.(1): continuity (the first one) and
equilibrium (the second one), as it was in case of
the multi-region BEM.

Continuity of the state function ® can be main-
tained by using the same order of basis functions
in both FE and BE formulations. Thus, if a three—
noded isoparametric quadratic boundary element is
used an equivalent finite element such as for exam-
ple eight-noded quadrilateral quadratic element or
six nodes isoparametric triangle has to be used for
the finite element approximation.

The essentiality of the problem lies in the fact
that the interpolation for the derivatives of the po-
tential for the FEM lies one order lower than the
order of the potential itself, whereas for the BEM
formulation developed here, the interpolation func-
tions has the same order not only for the potential
but also for its derivatives.

Such unequal interpolation of the normal deriva-
tives on the interface implants an error to the result-
ing system of equations as we could observe later.

Because along the interface the continuity and
equilibrium conditions have to be fulfilled, for the
FE approach we have to assume that on the inter-
face we would have additional unknown—flux, ex-
pressed by Neumann boundary conditions. Nor-
mally to solve FE system the Neumann boundary
conditions have to be known allowing us to solve
the system of equations. So now the FE system of
equations in its matrix form could be expressed as
follows

FE
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where ®(FE) and % are column matrices con-
taining the nodal values for the potential (photon
density) in the whole sub-domain 2; and its nor-
mal derivatives (current photon) on the interface
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The corresponding boundary integral equation
for the BEM sub—domain is given by
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where ®(BE) and % are the nodal potentials
(photon density) and theirs normal derivative vec-
tors respectively.

Combining the Eq.(2), Eq.(3) and adding the in-
terface conditions Eq.(1) one will get a system of
equations ready for the solution (see Eq.(16).

III. FINITE ELEMENT REPRESENTATION

The boundary—value problem for the FE sub-
region is defined by the second—order differential

equation [7]
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in conjunction with the boundary conditions (see
Fig. 2):

and g—i: on T; (5)

The equivalent variational problem for the
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Fig. 2. Interface between two FE sub-regions

boundary—value problem defined above is given by

0F(®)=0 o =9 on r (6)
where
F:§QF/E [<%>2+(%}>2+k2¢2} dQ+F[<I>wdri (7)

To discretize the functional (7), the FE sub-
region is divided into M elements and interface
boundary T'; (see Fig. 1) is broken into M; seg-
ments. Usually, M is much larger than M;. Within
each area element, the field is expressed as

6
O(z,y) = > Ni(e,y)®f = {N}T {2} = {2°}T(N"} (8)
=1

and on each line segment on the interface the field
is expressed as

3
(@,y) = 3N )0 = {N}T{e'} = {2}{N} (9)

i=1
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Assuming that the interface boundary I'; is a
smooth contour, the normal derivative of the
boundary field, which is v, is well defined at each
interface node and therefore can also be expressed
as

Pe,y) =D Nj(@ ) = (N} {9} = ("} {N"}

i=1

(10)

This is a weak point of this approach because the ®
and its normal derivative are approximated by the
same shape functions. Results of such approach will
be demonstrated later.

Substituting Eq.(8-10) into Eq.(7), we obtain

M
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and

B = [Ny Tar, (12)

Provided that the element length of the interface is
small, the Jacobian of transformation to local coor-
dinate system may be assumed constant and taken
out of the integral sign in Eq.(12) without causing
significant errors. Therefore, by substituting the
explicit expressions for the shape functions, it is
easy to perform the indicated integrations analyt-
ically. So the entries of matrix [B?] in case of the
quadrilateral three nodes isoparametric elements of
the interface in local coordinate system are defined

by
: NiNj NiN; NiNj
[B] = NéNf N'Zng N;Né J(&) =
NiN! NiNi NiN}

(13)

T
~ 15 15

Than, performing the assembly Eq.(11) can be
written as

F = 5{@)T [ATP)] {0} + {0)7 [BP] (v} (14)

where A(FE) is an N x N square matrix, B#®) ig

an N x M, rectangular matrix, ¢ is a column vector
representing the nodal values of field intensity and
1 is a column vector representing the nodal values
of g—: on the M; nodes of the interface. Differentiat-
ing F' with respect to each nodal field and equating



the resulting expression to zero yields a system of
linear equations
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Now the hybrid system of equations can be formed
in the following way
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The resulting matrices have to be rearranged to
accommodate the continuity and equilibrium con-
ditions (Eq.(1)) as well as the prescribed boundary
conditions. As a result we will get the matrix with
the following structure The matrix is unsymmet-
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Fig. 3. The FEM-BEM matrix structure

rical with much bigger bandwidth with two addi-
tional group of non—zero elements caused by the
interface between FE and BE sub—domains. Re-
arrangement of resulting matrix is very similar to
that required in multi-region BEM problems.

IV. NUMERICAL RESULTS

The coupling BEM and FEM is well established
problem in the literature. But we are interested in
a particular geometry of the regions and their ap-
proximations by BEM/FEM. Precision of the solu-
tions is extremely sensitive on geometry configura-
tion and the boundary conditions. Such a problems
will be illustrated by 2D carefully selected examples
which in some sense are similar to cross sections of
the human head.

A. FFE square immersed in BE region

Let us consider simple but interesting example
when the FE region is immersed in the BE sub-
region (see Fig.4) and The same numerical exam-
ple but the Finite Element sub-region will be dis-
cretised by isoparametric quadratic triangular ele-
ments (see Fig. 4). We can see that discretization
has a little influence on the precision of the solu-
tion. This is a very good news as we need to create
a model with as few nodes as possible.
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Fig. 4. Rectangular FEM region immersed in BEM: dis-
cretizations and solutions for different elements and grid den-
sities

B. Concentric circles

In order to present the sensitivity of the results
on boundary conditions the following example pre-
sented in two first columns in Fig. 5 was considered.
We can see that interface error is propagating inside
the FE sub-region, what is highly undesired behav-
ior. In order to eliminate possibility of the software
bug we have solved two FE sub-regions coupled by
interface conditions expressed by Eq. (1). As we
can see in third and fourth columns Fig. 5 the error
along the radius is almost equal to zero except of
the interface points. On this basis we are entitled

15



(VAVA
VAV
%g'

20| Q,
15|
10|

5§

"5 -20-15-10 -5 0 5 10 15 20 25 "5 -20-15-10 -5 0 5 10 15 20 25
BEM-FEM coupling BEM-FEM couping

60 120 180 240 300 360 60 10 180 240 300 360
angle [deg | angle [deg.]

BEM-FEM couping BEM-FEM couping
1 "
< Fe - oew < e sen
s . = G
107 107
o 9%,
o 107 e
E : 13 2
%mw a e 00 |
o S finferface ~50®
Wil e i I e irsce
54 FEM
w0 w0
107 10
o5 w0 G5 0 50 s w0 5w I I R
stance o stance ]
BEM-FEM coupling BEM-FEM coupling

EM
BEM
BEM

intertacy

error 5]
ermor 6]
8

infertace

inf 50 FEM

"5 20 15 10 10 15 20 25 "5 20 15 10 10 15 20 25

G 5 0 5
distance [mm] distance [mm]

-15-10 -5 0 5 10 15 20 25 <35 20 -15-10 -5 0 5 10 15 20 25

x FEM-FEM-interface

v FEM-FEM

— FEM-interface
EM

= FEM-FEM-interface
~FEM

EM
— FEM-interface
M

107 107!
0 45 90 135 180 225 270 315 360 0 45 o0 135 180 225 210 315 360
. FEM-FEM coupling . FEM-FEM coupling
10 10
o R o A
g # o M-t
¢ i inerface interface
a2 2 3
1074 il 10
o ifterface 13 8
1070 10 L
10 intertace] 101
— o] e
o FEM-FEM o FEM-FEM
107 107
25 20 -15 -10 -5 0 5 10 15 20 25 25 20 -15 -10 5 0 5 10 15 20 25
FEM-FEM coupling FEM-FEM coupling
1
interface|
ok £ 4
i 3
,] 7 i
E i g
2|3 o
3 -
ol FEM-int o
-4 4
5 3 FEM-int
O inferface ] 2
-7 3 1
E
-8 H ob
ilertace interface
5 20 -15 -10 -5 0 5 10 15 20 25 5 20 15 -10 5 0 5 10 15 20 25

Fig. 5. Circular region: hybrid FEM-BEM solution: coarse discretization (first column) and dense one (second column)
and FEM-FEM coupling: coarse discretisation (third column) and dense (fourth column)

to conclude that software is constructed correctly.

V. CONCLUSION

The application of the hybrid approach was pre-
sented in this paper. Unfortunately on the interface
for this formulation of BEM high error occurred on
the interface. There are at least two ways to avoid
such errors which are propagated inside of the FE
sub-region. The first approach is to reformulate the
normal derivative approximation and the second to
apply the Gallerkin formulation of BEM. Both ap-
proaches will be investigated in the future.
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