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Abstract— The paper presents an analytical solu-
tion of the clear region immersed in the highly scat-
tering one. This problem is very important in Op-
tical Tomography. The analytical solution is an ex-
cellent benchmark problem so we can compare the
numerical solution like FEM or BEM with the ana-
lytical one presented in this paper.

I. INTRODUCTION

For light transport the Boltzman equation is ap-
proximated by the diffusion equation for simplicity
[1]. Consider the diffusion equation in frequency
domain.

) LN s2 DN _QO(I'W)
V- -VO(r;w) —6®(r;w) = D) re (1)
where § = ‘S((:)) - #‘&’r), diffusion parameter
D(r) = m and fiq, ,u; are absorbing and re-

duced scattering coefficients respectively, ¢ — speed
of light.

Approximation of Boltzman equation by Eq.(1) is
valid only in case of highly scattering regions. That
means the CSF layers (clear layer/low scattering
layer) could not be described by diffusion equation.

In such cases frequently occurred in Optical To-
mography the clear layer should be replaced by the
non-local boundary conditions [1], [4], 5], [6], [8],
[11].

Let us consider the simple 2D example (see Fig.
1), having the analytical solution [6]. The dimen-
sions of the region are typical for Optical Tomog-
raphy baby’s simplified head model and have the
following values: r; = 25.0mm, ro = 22.5mm and
r3 = 19.5mm. The strongly scattering regions data
were assumed: g, = 0.1mm~! and p/, = 1.0mm™!
and in non-scattering region u, = 0.lmm~! (see
for example [2]). For the sake of simplicity, the
unit input flux on the outermost boundary was im-
posed and a steady state was considered. Geometry
of the region and imposed boundary conditions re-
duce this problem to 1D.

II. ANALYTICAL SOLUTION FOR DIFFUSIVE
BOUNDARY CONDITIONS

Diffusive nonlocal boundary conditions used in
FEM introduced by Arridge in [8] and next used by
many others mainly in the FEM code [3], [6], [7],
[8]- Let us consider 2D region shown in Fig. 1. If
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Fig. 1. 2D region with a non-scattering gap

we assume that incoming flux is constant, than the
boundary conditions on the outermost boundary I'y

are
D 0¢
- (W“ 5%)

1 e
|1

Due to the symmetry of the region and constant
boundary conditions solution will take the form

é(r,©) = ' 1, (67) + K K, (67) (3)

Where I, and K, means the zero order Bessel func-
tions of the first and second kind respectively. For
a diffusive region

61(1,0) = ] 1,(07) + cf K, (or)
(4)
W = c{6L(0r) — ¢ff 6K (67)

Due to the singularity of the K, function when r
tends to zero, solution for a diffusive region Q3 be-
come
8(;53 (7’, @)
o = ctsI (or) (5)
As we can see the solution does not depend on the
angle ©. We have three unknown coefficients which
could be calculated by implementing boundary con-
ditions on the I'y, I's and I's as follows:

for the boundary I'y

$3(r,©) = A1, (67)

8¢F1 (T) _
2v¢r, (r) + DT =2
(6)
el (2y1,(671) + DSIL(671) 4 K (2vK o (67r1) +

—DSK1(5r1)) = 2
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for the boundary I's —r € '; and r' € 'L UT'3

(ol

! or,()G(|r — 1/|)dT'{(7)

I';=I'suUl's

¢F2 (r) =

yes

Due to imposed boundary conditions, ¢r, is con-
stant so one can write:

8¢F2 ( )

dry(r) = on

+ 7¢F2(7” /Q(\r —r')dls +
——ory(r") [ G(c ~'Dars (®)

where o = 1 in our case.
for the boundary I's —r€I'sand r’ e '3 UTy

0
brr) = —ap?l) )
+ / or, ()G (|r —1/[)dT'{9)
=I'5UIl's
and finally:
ora(r) = a2 Lo o1y [ G —rara (10
Ta

where the operator G(|r—r'|) is the radiosity ker-
nel [9], representing diffuse-diffuse propagation of
light in free space and is equal to zero when the
vector ' € I's. Points on the most inner circle I's
are not visible for itself.

Implementing Eq.(4) and Eq.(5) into Eq.(7) and
into Eq.(9) we will get:

c{[o(érg) = 7o¢Dc{511 (6r3) + glcélo(érg) + glcho(tSrg)
et [1,(8r2) — aD8I1 (672)] + cX [Ko(6r2) + aDSK (672)] =

gs [célo(&rz) + cé(Ko((Srz)} + ng{IO([sTg)

Adding the Eq.(6) and doing some math we will
get a system of linear equations which alow us to
calculate unknown coefficients ¢!, ¢ and cf.

el (271, (571) + D8I, (671) + X (27K, (8r1) — DSK1(5r1))
=2
70{9110(5'@) — c{{glKo(érg) + cé [Io(8r3) + D3I, (6r3)]

=0 (12)

1 [(1 = g3) Lo (8r2) — aDSI1 (8r2)] + ey [(1 — g3) Ko(8r2)+
aDKq(6r2)] — Cégg[o(57‘3)
=0

III. ANALYTICAL SOLUTION FOR PP BOUNDARY
CONDITIONS

P, boundary conditions were suggested by Rip-
pol in [9] and used for integral formulation of OT
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by others [11], [10], [12], but till now no compar-
ative analysis between diffusive and P; nonlocal
boundary conditions does exists. Now, using the 2D
benchmark presented in Fig. 1, we will make the
comparison and we would be interested what dif-
ference are caused by using Diffusive (FEM) or P;
(BEM) boundary conditions. For the boundary I'y
the Robin boundary conditions remain the same as
for diffusive boundary conditions. For the bound-
ary I's —r € T'y and ' € I's UT'3 and boundary
I's —r €T's and v’ € I'y, the nonlocal P, boundary
conditions are imposed:

¢F2(7’) — QD%F—Q(T) +

1 Ry (99751"2
;[m( )+ DRt ]/g<|r—r\>drz+

1 , Ry 0¢rs( ’

— {quS(r)_DR_;%} [ et =rDars @)
T's

¢rg(r) = *OCDL)? (r) +

1 Ry O

= {m( >+DR—; m ]/g(lr—r\)dm

Finally we will get a system of linear equations for
el e and ¢ unknowns.

el (271, (871) + D8I, (671) + X (27K, (8r1) — DSK1(8r1))
=2
R
—C{gl |:IO(6T2) + D—J(Hl(érg)] —
Ry
K Ry
¢y g1 | Ko(dr2) — D—==0K1(0r2)| +
Ry
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(14)

0 = e Kora) + D6 (a4 a0 1 ) Ko -

Ry
cégQ |:IO(5T3) — DR—511(5T3)] =0
U

Solution of the system of algebraic equations Eq.
(12) and Eq. (14) will provide the coefficients ¢}, ¢
and ¢l for the analytical solution. But first we have
to know haw to calculate operators g1, go and gs.
Those operators depend on visibility function which
is included into radiosity kernel G so we can call
them visibility operators.

IV. VISIBILITY OPERATORS

Let us consider the case wherer € I's and r’ € I'y
(see Fig. 2)

cosU, = s
T2
. (r—r)
= B —— ]_
c0sO 0 7 =x) (15)
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Fig. 2. Visible part of boundary I's when r € I'3
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Let us consider the case wherer € I'; and ' € 'y
(see Fig. 3)
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Fig. 3. Visible part of boundary I's when r € I'y
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And finally let us consider the case where r € T'y
and r’ € I3 (see Fig. 4)
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Fig. 4. Visible part of boundary I's when r € I'y
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V. NUMERICAL RESULTS

In order to present the sensitivity of the re-
sults on the geometry of the domain and optical
parameters two examples were considered. The
first one for the region with normalized dimensions:
ry = 1.0,79 = 0.8 and r3 = 0.5. The strongly scat-
tering regions data were assumed: p, = 0.5 and
le = 50.0 and in non-scattering region p, = 0.25
(see for example [6]). This kind of data values re-
flects a neonatal brain model of diameter 100mm.
The second example is typical 2D benchmark for
OT as was mentioned in the introduction. Com-
parison of the solution for the internal field distri-
bution along the radius of the domain is shown in
Fig. 6 and in Fig. 8. As a reference to the solution
with a clear layer, the solution for the homogeneous
diffusive region is shown in the same figure.
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Fig. 5. Normalized region for P; B.C.
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Fig. 6. Comparison with diffusive B.C.
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Fig. 7. The second example for P; B.C.

VI. CONCLUSION

The application of the analytical method to the
regions containing the non-scattering inclusions is
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Fig. 8. Comparison with diffusive B.C.

presented in this paper. Two different non-local
boundary conditions have been applied and the so-
lutions were compared. Achieved results indicate
a great influence the boundary conditions and the
geometry of the region under consideration on the
quality of the solution. Still there is an open ques-
tion which one better reflect the reality. This will
be the next question which we would like to answer.
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