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Speeding up Waveform Relaxation
Algorithms

Marek Ossowski, Andrzej Kuczy«ski

Abstract�The paper deals with a problem of im-
proving e�ciency of the waveform relaxation (WR)
algorithms for linear and nonlinear dynamic circuits.
An algorithm for solving di�erential equations using
multisplitting concept and overlapping procedures,
was formulated in a way that provides the conver-
gence of iteration process. In order to split the cir-
cuit into independent parts, the chosen branches are
cut o� and appropriate sources, voltage or current,
are inserted instead of eliminated links. Voltages
and currents of these sources form an additional set
of algebraic variables, carrying information between
separated parts. The conditions that are to ensure
the convergence of iteration process were conside-
red. The special circuit splitting and overlapping,
guarantee ful�lment of the convergence conditions.

I. Introduction

THE waveform relaxation (WR) methods, intro-
duced by Lelarasmee [7] and developed during

last ten years by many authors, are still actractive
alternative to the incremental-time (IT) direct me-
thods. They enable us to signi�cantly decrease the
size of analysed circuits and are suitable, in natural
way, to be implemented in parallel-processor com-
puter systems (parallel programming). The main
advantage of this method is the possibility of using
di�erent step size for di�erent subsystems: subcir-
cuits only with �slow� components can be integrated
with larger step size than those with �fast� compo-
nents. Slow convergence, a result of a strong co-
upling between subcircuits, seems to be a major di-
sadvantage of the investigated methods. Moreover,
depending on the size of time window, much more
memory is needed to store discrete solutions of the
previous iteration for every subsystem. WR algo-
rithms become worth attention, if the number of
iterations, ensuring the prede�ned accuracy of the
solution, is small enough. The problem with impro-
ving e�ciency without loosing exactness seems to
be hard to solve for general circuits. Some authors
[14], [15], used the Succesive Overrelaxation Algo-
tithms with autoadaptive choice of the relaxation
factor. Today, multisplitting techniques together
with overlapping methods [11], [12], [13] are more
aplicable.
The main purpose of this paper is to present WR

algorithm for solving nonlinear di�erential circu-
its that preserves convergence of iterations and gu-
arantees much better e�ciency than standard tech-
niques. Considerations related to convergence and
e�ciency of the proposed method are illustrated by
the representative example. Its comparison to stan-

Authors are with the Institute of the Electrotechnics, Me-
asuremants and Material Science, Technical University of
Lodz, ul.Stefanowskiego 18/22, 00-000 Lodz, Poland, e-mail:
akuczyn@mail.p.lodz.pl, mosso@mail.p.lodz.pl.

dard algorithms is also included.

II. Fundamentls of the method

A. Circuit equations

We will investigate the circuit decomposed into
N mutually connected subcircuits. An exemplary
splitting for N=4 is shown in �gure 1.
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Fig. 1. Circuit decomposed into 4 subcircuits

To simplify further explanations, let us consider
the circuits splitted into two subcircuits, labeled
N 1 and N 2 respectively, connected by three wires
(see �gure 2).
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Fig. 2. Connections between two subcircuits

Introducing additional sources, instead of the re-
moved connections, we have two systems presented
in �gure 3. Circuits from �gures 2 and 3 are equ-
ivalent, if the following relations are ful�lled:

̂̂
i11 = i21 , ̂̂u12 = u22 , (1)̂̂
i22 = −i12 , ̂̂u21 = −u11 . (2)

Let ̂̂s1 and ̂̂s2 be the vectors of additional sources
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Fig. 3. Circuits with additional sources

for circuits N 1 and N 2 respectively:

̂̂s1(t) =

[̂̂
i11(t)̂̂u12(t)

]
=

[
i21(t)

u22(t) ,

]
(3)

̂̂s2(t) =

[̂̂u21(t)̂̂
i22(t)

]
=

[
−u11(t)
−i12(t)

]
. (4)

Circuits N 1 and N 2 are described by equations:

M1 
x1(t) + A1 x1(t) = D1 s1(t) − G′
1
̂̂s1(t) , (5)

M2 
x2(t) + A2 x2(t) = D2 s2(t) − G′
2
̂̂s2(t) , (6)

where M1 ∈ RN1×N1 , M2 ∈ RN2×N2 (matri-
ces M1 and M2 are nonsingular by assumption),
A1 ∈ RN1×N1 , A2 ∈ RN2×N2 , D1 ∈ RN1×Z1 ,

D2 ∈ RN2×Z2 , G′
1 ∈ RN1×bZ1 , G′

2 ∈ RN2×bZ2 ,
vectors x1 ∈ RN1 i x2 ∈ RN2 denote state varia-
bles, vectors s1 ∈ RZ1 and s2 ∈ RZ2 contain in-
dependent sources placed inside individual circuits,

vectors ̂̂s1 ∈ RbZ1 and ̂̂s2 ∈ RbZ2 contain additional
sources.

It follows from the equations (3) and (4) that
the values of additional independent sources can be
de�ned by the relations:

̂̂s1(t) = −B2 x2(t) + C2 s2(t) = N2 ŝ2(t) , (7)̂̂s2(t) = −B1 x1(t) + C1 s1(t) = N1 ŝ1(t) , (8)

where B2 ∈ RbZ1×N2 , B1 ∈ RbZ2×N1 , C2 ∈
RbZ1×Z2 , C1 ∈ RbZ2×Z1 N2 = diag(1, . . . , 1) ∈
RbZ2×bZ2 N1 = diag(1, . . . , 1) ∈ RbZ1×bZ1 .

Matrix description which results from the above

relations is of the form:M1 0 0 0
0 M2 0 0
0 0 0 0
0 0 0 0

 ·


x1


x2

̂s1

̂s2

+

+

A1 0 G1 0
0 A2 0 G2

B1 0 N1 0
0 B2 0 N2

 ·
x1

x2

ŝ1

ŝ2

 =

=

D1 0
0 D2

C1 0
0 C2

 · [s1

s2

]
(9)

Now, let us consider circuit, which consists of any
N subcircuits. This case can be described by gene-
ral matrix equation:[

M 0
0 0

]
·
[

x

̂s

]
+

[
A G
B N

]
·
[
x
ŝ

]
=

[
D
C

]
s (10)

where

x =

x1

· · ·
xN


M1×1̂

s =

 ŝ1

· · ·
ŝN


M2×1

s =

 s1

· · ·
sN


M3×1

(11)

moreover, xn ∈ RNn , sn ∈ RZn , ŝn ∈ RbZn ,
M = diag(M1, . . . ,MN) ∈ RM1×M1 a Mn ∈
RNn×Nn (n = 1 . . .N), A = diag(A1, . . . ,AN) ∈
RM1×M1 a An ∈ RNn×Nn (n = 1 . . .N),
G = diag(G1, . . . ,GN) ∈ RM1×M2 a D =
diag(D1, . . . ,DN) ∈ RM1×M3), B ∈ RM2×M1 ,
C ∈ RM2×M3 , N = diag(1, . . . , 1) ∈ RM2×M2 .
A type of the chosen WR procedures results in a

type of splittings of the structural matrices into two
parts: M = Ma−Mb, A = Aa−Ab, B = Ba−Bb,
C = Ca − Cb, D = Da − Db, G = Ga − Gb,
N = Na − Nb.[

Ma 0
0 0

]
·
[

x

̂s

](j+1)

+

[
Aa Ga

Ba Na

]
·
[
x
ŝ

](j+1)

=

=

[
Mb 0
0 0

]
·
[

x

̂s

](j)

+

[
Ab Gb

Bb Nb

]
·
[
x
ŝ

](j)

+

[
D
C

]
s

(12)

For the block Jacobi WR method we take as fol-
lows: Mb = 0 i Ab = 0, Mb = 0, Ga = 0, Bb = 0,
Nb = 0.[

M 0
0 0

]
·
[

x

̂s

](j+1)

+

[
A 0
B N

]
·
[
x
ŝ

](j+1)

=

=

[
0 0
0 0

]
·
[

x

̂s

](j)

+

[
0 G
0 0

]
·
[
x
ŝ

](j)

+

[
D
C

]
s

(13)

B. Multisplittings

Let L denote the number of di�erent splittings
arisen from the process of circuit decomposition.
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Splitting denoted by k is de�ned as well by the
structural matrices decompositions as by the addi-

tional weight matrix E
∣∣∣
k
∈ R(M1+M2)×(M1+M2).

[
Ma,k 0

0 0

]
·
[

x

̂s

](j+1)

k

+

[
Aa,k Ga,k

Ba,k Na,k

]
·
[
x
ŝ

](j+1)

k

=

=

[
Mb,k 0

0 0

]
·
[

x

̂s

](j)

+

+

[
Ab,k Gb,k

Bb,k Nb,k

]
·
[
x
ŝ

](j)

+

[
D
C

]
s (14)

The �nal result of the j+1 iteration is[
x
ŝ

](j+1)

=

k=L∑
k=1

E
∣∣∣
k

[
x
ŝ

](j+1)

k

(15)

and the relation E
∣∣∣
1

+ E
∣∣∣
2

+ · · · + s E
∣∣∣
L

=

diag(1, . . . , 1) must be ful�lled.
Let us describe Jacobi WR method used with the

concept of multisplittings. We assume that L = N
and that the splitting of circuit matrices doesn't
vary at every stage k (k = 1, . . . ,N). It means, the
splitting description given by (13) stays the same.

We will change weight matrices E
∣∣∣
k
in such a man-

ner, that, at every stage k, we need to know only
the values of vector variables xk, ŝk, which can be
calculated directly from the subcircuit k.
Let us explain the weight matrix construction.

For that purpose we introduce the notations:

E(x)
∣∣∣
k
∈ RM1×M1 i E(bs)∣∣∣

k
∈ RM2×M2 .

E
∣∣∣
k

=

E(x)
∣∣∣
k

0

0 E(bs)∣∣∣
k

 (16)

For k = 1, . . . ,N we set zeros into matrices E(x)
∣∣∣
k

and E(bs)∣∣∣
k
, except the diagonal elements corre-

sponding to the xk and ŝk variables respectively,
where we set 1.

C. Subcircuits overlapping

The basic idea of overlapping techniques is reali-
zed here in such a manner, that two subcircuits will
be analyzed simultaneously and the weight matri-
ces are of the form:

E
∣∣∣
k

= α

E(x)
∣∣∣
m

0

0 E(bs)∣∣∣
m

+

+ (1 − α)

E(x)
∣∣∣
n

0

0 E(bs)∣∣∣
n

 (17)

where α ∈< 0, 1 > and for k = 1, 2, . . . ,N pa-
irs of numbers m,n, have the following values:
(1, 2) (2, 3) . . . (N, 1).

D. Convergence condicions

Convergence condition for the algorithm descri-
bed by formula (14) is of the form [13]:

ρ

(
L∑

k=1

E(x)
∣∣∣
k

M−1
a,k Mb,k

)
< 1 , (18)

ρ

(
L∑

k=1

E(x)
∣∣∣
k

N−1
a,k Nb,k

)
< 1 , (19)

where ρ(∗) is an operator of �nding spectral radius
of a given matrix. Because Mb,k = 0 and Nb,k =
0 hold for k = 1, . . . ,N + 1, convergence of the
investigated algorithm is always ensured.

E. Nonlinear circuit analysis

Let us consider description of the splitted system:

fx ( 
x,x, ŝ, s, t) = 0 , x(0) = 	x
fbs (x, ŝ, s, t) = 0 , (20)

where fx = [fx,1 . . . fx,N]
T
, fbs = [fbs,1 . . . fbs,N]

T
and

fx,n ∈ RM1,n , fbs,n ∈ RM2,n , wheras n = 1, . . . ,N,
M1,1 + · · ·+M1,N = M1, M2,1 + · · ·+M2,N = M2.
We are looking for a solution vector x(t), which
satis�es equations (20) over a given �nite interval
[0, T ].
Thus, the equations describing subcircuit number

n are of the form:

fx,n

(

xn,xn, ̂̂sn, sn, t

)
= 0 , xn(0) = 	xn

fbs,n (xn, ŝn, sn, t) = 0 , (21)

where ̂̂sn is a vector containing sources acting in-
side subcircuit n, and ŝn contains sources supplying
other subcircuits, but calculated in relation with
xn.

F. Algorithm

1. Iterate: For j = 1, 2, . . . to satis�ed do:
2. Set: x(j)(0) = 	x.
3. Solve: for k = 1, . . . ,N

fx,n

(

x(j+1)
n

∣∣∣
k

, x(j+1)
n

∣∣∣
k

, ̂̂s (j)

n , sn, t

)
= 0 ,

fbs,n (x(j+1)
n

∣∣∣
k

, ŝ j+1
n

∣∣∣
k

, sn, t
)

= 0

fx,n+1

(

x(j+1)
n+1

∣∣∣
k

, x(j+1)
n+1

∣∣∣
k

, ̂̂s (j)

n+1, sn+1, t

)
= 0 ,

fbs,n+1

(
x(j+1)

n+1

∣∣∣
k

, ŝ j+1
n+1 , sn+1, t

)
= 0

(22)

to obtain x(j+1)
∣∣∣
k
and ŝ j+1

∣∣∣
k
.

4. Calculate: x(j+1) by the relationship[
x
ŝ

](j+1)

=

N∑
k=1

E
∣∣∣
k

[
x
ŝ

](j+1)

k

(23)

where E
∣∣∣
k
is expressed by equation (17).
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To study convergence of the presented algorithm we
apply Newton's method in functional space [16]. As
a result we approximate nonlinear equations (20) by
the linear system with time-varying coe�cients[

Ma(t) 0
0 0

]
·
[

x

̂s

](j+1)

+

[
Aa(t) Ga(t)
Ba(t) Na(t)

]
·
[
x
ŝ

](j+1)

=

=

[
Mb(t) 0

0 0

]
·
[

x

̂s

](j)

+

[
Ab(t) Gb(t)
Bb(t) Nb(t)

]
·
[
x
ŝ

](j)

+

+

[
D(t)
C(t)

]
s , (24)

where M(t) = Ma(t)−Mb(t) and N(t) = Na(t)−
Nb(t) are nonsingular matrices for all t ∈ [0, T ].
Waveform method is convergent [2] if

max
t∈[0,T ]

ρ
(
M−1

a (t) Mb(t)
)

< 1 and

max
t∈[0,T ]

ρ
(
N−1

a (t) Nb(t)
)

< 1 . (25)

We assume Mb(t) = 0 and Nb(t) for every t ∈
[0, T ], hence the condition (25) is ful�lled for the
given iteration procedure.

III. Numerical example

To investigate e�ciency of the proposed algori-
thm we have analysed a simple testing circuit (the
N-segment model of transmission line with nonli-
near conductance) presented in Fig.4. We com-
pared standard block Jacobi WR algorithm with
the proposed multisplitting procedure for the wide
range of overlapping coe�cients. Calculating two
neighbouring segments and using the factor α = 0.6
we have speeded up the iteration process by 30%
(average result for di�erent values of model ele-
ments). We have used zero initial vector, error to-
lerance ε = 10−4 and trapezoidal rule as basic code
of ODEs. As a stopping criteria we require∣∣∣∣∣∣x(j+1)(t) − x(j)(t)

∣∣∣∣∣∣ ≤ ε ,

for all t ∈ [0, T ].

Fig. 4. Transmission line model for numerical test

IV. Conclusion

The concept of waveform relaxation algorithm
presented above is based on the special multisplit-
ting of the nonlinear circuits. Partial results are
relaxed with overlapping techniques. Applying this
conncept we can ensure numerical stability of the
WR iterations performed for the nonlinear circuit
having nonsingular structural matrices ful�lling the

convergence criteria (25). Hence, there is no need
to check convergence of the procedure in every step
of the discrete numerical iteration. The numeri-
cal experiments showed that applying proposed me-
thod we can improve the e�ciency of the WR algo-
rithm by more than 30%. The proper choice of de-
composition and optimisation of the linking struc-
ture may speed up the method signi�cantly, but
the general rules are very hard to be uniquely de-
�ned. The use of di�erent overlapping coe�cient a
for di�erent subcircuits is still investigated by au-
thors and today results looks promising.
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