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 Abstract — In this paper we propose an algorithm for 
blind signals separation in the presence of additive noise. 
Our method is based on second order statistics and 
spatio-temporal whitening. We propose using filtered 
time delay covariance matrix for noisy signals. The 
computer simulation experiment confirms validity of our 
conception.  

 

I.  INTRODUCTION 
LIND signal separation (BSS) is a fundamental 
problem that is encountered in many practical 
applications such as telecommunications, array 

signal processing, image processing, speech 
processing, multiple sensor biomedical signals. The 
BSS task is to estimate the source without having 
special information about the sources and additive 
noise mixed with the original source. Many methods 
and tools for solving the BSS problem have been 
developed e.g. neural networks, higher order statistics, 
Kalman filters [1,7].  

The main property we explore in this paper, 
addresses to nonstationary structure of sources. Mainly 
we are interested in the second-order nonstationarity 
(in the sense that sources have time-varying variance) 
which leads to second-order BSS algorithms 
[2,3,5,6,11].  

The method presented in this paper can be an 
treaded as extension of AMUSE algorithm [7,12]. 
Especially we focus on robust properties to additive 
noise influence. To resolve that problem we need a 
generative model for observed signals. We make an 
assumption that the m-dimensional observation vector 
x(t) is generated by 
 

 )()()( ttt vAsx +=  (1) 
 
where: 
1. nm    ×ℜ∈A  is the unknown full column rank 

mixing matrix with    nm  ≥ ,  
2. s(t) is the n-dimensional source vector,  v(t) is the 

additive noise vector that is assumed to be 
statistically independent of s(t). 

3. Sources are spatially uncorrelated with different 
autocorrelation functions, 
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4. Additive noises v(t) are spatially correlated but 
temporally white 0v =)]t([E  and 

rs
TsrE δvRvv =])()([  where: rsδ  is the 

Kronecker symbol, vR  is a diagonal noise 
correlation matrix, [.]E  is expectation operator.  

 

 
Fig. 1. Blind separation model: mixing, adding noise and estimation. 

 
The task of BSS is to estimate the demixing matrix 

W in order to estimate original source signals. The 
basis difficulty is lack of knowledge both A and s in 
(1). This fact introduces two ambiguities in the 
solution. It is impossible to recover original variance 
and order of s. So, we accept estimated signals 
rescaled and reordered in comparison with original 
signals [7]. Let W describe demixing matrix and    
 

 )()()()( tttt WvWAsWxy +==  (2) 

 
Our aim is to find such matrix W that 
 
 PDWAG ==  (3) 
 

where G is the global transformation matrix which 
combines the mixing and separating system (G is 
called the generalized permutation matrix), P is some 
permutation matrix, D is some scaling  nonsingular 
diagonal matrix [1,6,7]. After (3) is achieved separated 
signals can be covered by random noise witch can be 
eliminated by classical filtering [8,10].  

 

II.  SECOND-ORDER STATISTICS AND DIAGONALISATION 
To present our method we start with second order 
statistic properties and diagonalization processes for 
matrix separation in noiseless case.  Let’s define time 
delay correlation matrix [9] 
 

 )]()(E[)( T t-ptp ssRs =  (4) 
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and to obtain matrix with symmetric properties we 
formulate [6] 

 

 { })()(
2
1)(~ ppp T

sss RRR +=  (5) 

 
For simplicity we assume that 0)]([ =tE s . Notice 

that if we set p=0 we have standard correlation matrix 
)]()([)0( T ttE ssRs = . In the same way we build 

correlation matrices for observed and separated signals 
denoted as )( pxR , )(~ pxR , )( pyR , )(~ pyR . With 

diagonal correlation matrix of sources )0(sR , and 
with stationary white additive noise 
( 0)( =pvR , 0≠p ), we get: 

 )0()0()0( T
vsx RAARR +=  (6) 

 T)()( AARR sx pp =  (7) 

 
The following theorem will be useful our 

considerations [6,7].  
  
Theorem 1 
Let nn

2121 ,,, ×ℜ∈DDΛΛ  be diagonal matrices with 
nonzero diagonal entries. Suppose that 

nn×ℜ=G satisfies the following decompositions: 

 T
11 GGΛD = , (8) 

 T
22 GGΛD = , (9) 

where: 2
1

1 DD−  and 2
1

1 ΛΛ−  have distinct diagonal 
entries then the matrix G is the generalized 
permutation matrix. 

Correlation matrices of observed signals )(~
1pxR  

and )(~
2pxR , where 021 ≠≠ pp  allow to use the 

Theorem 1. First we make transformation 
  
 )()( 1

2/1
1 tt T xUDz −=  (10) 

 
where 11   , UD are from eigenvalue decomposition 

 

 Tp 1111)(~ UDURx =  (11) 

 
The correlation of transformed signals is  

 

 IDURUDR == −− 2/1
1111

2/1
11 )(~)(~ pp x

T
z  (12) 

 
Performing EVD decomposition of )(~

2pzR for chosen 

2p  we have 

 T
z p 2222)(~ UDUR =  (13) 

 
Transformation of the form 

 )()( 2 tt T zUy =  (14) 

 
gives us 
 
 32222 )(~)(~ DURUR == pp z

T
y  (15) 

 
where 3D  is a diagonal matrix. With assumption 

that sources have diagonal correlation matrices 
)( psR we can write 

 

  IUDUARAUDU =−−
2

2/1
1111

2/1
12 )(~ T

s
TT p  (16)

   

 32
2/1

1121
2/1

12 )(~ DUDUARAUDU =−− T
s

TT p  (17) 

 
Based upon Theorem 1 matrix AUDUG TT

1
2/1

12
−=  

is the generalized permutation matrix and 
TT
1

2/1
12 UDUW −=  is a demixing matrix (separating 

matrix). The properties described above provide to 
efficient algorithms. But one of main problem is how 
to reduce influence of additive noise.      

To increase robust properties for additive noise we 
propose filtered time-delayed correlation matrices 
defined as 
 
 )]()(E[)( T t-ptp xxRx =  (18) 
 

where )(tx is filtered version of )(tx . It can be 
simple FIR filtration described as 
 

 ∑
=

−=
K

k

ktkbt
1

)()()( xx  (19) 

 
where b(k) are filter coefficients the same for all 

signals in x. Similar to previous analysis we define 
symmetric filtered time delay correlation  matrix 
 

 { })()(
2
1)( ppp T

xRRR xx +=
(

 (20) 

 
The exploration of above formula leads us to 

iterative separation algorithm which for simplicity will 
be described for equal number source and observed 
signals.       

 

III.  ALGORITHM OUTLINE: FILTERED MULTISTAGE 
TIME DELAY DECORRELATION (FMTDD) 

 
We propose a new algorithm, called Filtered 
Multistage Time Delay Decorrelation (FMTDD). 
 
1. Let )()( tt xz = , p=0.  
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2. Estimate the correlation matrix of observed 
signals with mixing matrix.  

 [ ] ∑
=

−≈−=
N

TT ptt
N

pttp
1t

)()(1)()(E)(~ zzzzRz  (21) 

 where 

 ∑
=

−=
K

k
ktkbt

1
)()()( zz   (22) 

)(tz is filtered version of )(tz , it can be simply 
smoothing process with not large order. 

 
3. Compute the symmetric matrix  

 { })()(
2
1)( ppp T

zzz RRR +=
(

 

4. Apply the eigenvalue decomposition of 
matrix )( pzR  

 T
z p UUΣR  )( =   (23) 

where [ ] mm
m

  
21 ,...,, ×ℜ== uuuU  is orthogonal 

matrix of eigenvectors, },...,{ 1 mdiag σσ=Σ  is 
diagonal matrix of eigenvalues. 

 
5. Perform decorrelation for set delay 
 

 )()( 2/1 tt T zUΣy −=   (24) 

6. Let )()( tt yz = , p=p+1 and we repeat steps 2-6 
 

Typical number of iterations is not large (between 2 
and 20). FMTDD algorithm explore the same idea as 
SOBI or AMUSE [3,12], but estimates a mixing 
matrix from a filtered time delayed correlation matrix. 
Due to filtration process in correlation matrix 
calculation FMTDD is robust to additive noise in 
significant level.  

In the case without additive noise we can use 
standard time delay covariance matrix (against filtered 
matrix). Note that such algorithm is vary fast, by its 
simplicity, and gives good results even if there are 
many sources.  

For more sensors than sources n < m the number of 
sources can be detected by inspecting the dominant 
singular values )0(xR  [7]. 

 

IV. COMPUTER SIMULATION 
We consider problem of blind signal separation in the 
presence of the large additive noise. Noise level is 
given by signal to noise ratio SNR, defined as  
 

 ( ))var(/)ˆvar(log10 10 iii vxSNR =   (25) 

 
where )ˆvar( ix  is a variance of mixed sources 

without the additive noise, )var( iv  variance of 

additive noises. We generate five source signals and 
mixing matrix A. All the elements of mixing matrix 
are drawn form uniform distribution (-1,1). Both 
signals and matrix are assumed to be unknown.  
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Fig. 2. Experiment results a) source signals, b) mixed signals 

 
Source signals are mixed and disturbed by additive 

noise, Fig 2. The noise level in particular channels is 
SNR1=0.9875, SNR2=-6.6863, SNR3=-0.1585, 
SNR4=3.0856, SNR5=2.0073. To measure the 
performance of our method we use performance index 
defined as  
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(26) 

 
where ijg is the (i,j) element of the global system 

matrix G=WA. If the performance index is zero, then 
the perfect estimation is achieved. 

Signals after separation and next after denoising 
filtration are presented in Fig. 3. We can show the 
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efficiency of the algorithm by presentation diagram of 
global transformation matrix G which is close to 
global permutation matrix. In computation was used 
algorithm with delays p={0,1,...,14} and smoothing 
filtering. In this case we obtain  PI=0.08. 
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Fig. 3. Experiment results a) separated signals, b) signals after noise 
cancellation 

V. CONCLUSIONS  
We have presented a new method of BSS in the 
framework of filtered time-delayed correlation 
analysis. Presented methods gives good results in the 
presence of medium level of the additive noise. In case 
of estimating mixed signals with additive noise, the 
better results are obtained when the number of 
observed signals is bigger than number of source 
signals. In noiseless case we can left out filtration 
process time delayed covariance matrix what leads us 
to simple efficient algorithm where only two 
correlation matrices for p=0 and p=1. 
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Fig. 4. Global transformation matrix (G) diagram 

 

In the noisy case we typically need more matrices 
but it is open question how to determine a priori 
optimal number of them. The second question is what 
type of filtration should be used. We not recommend 
complex filtration to not disturb statistical structure 
processed signals. The good performance of the 
proposed method was confirmed by numerical 
experiments.   
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