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 Abstract — In Electrical Impedance Tomography 
(EIT) as a default 3D diagnostic method, the most 
challenging task is to determine the distribution of 
potential in specific organs. In order to simulate and 
collect values of the potential, the adequate model of 
computer simulation and the forward problem solution 
methods are needed. The Finite Element Method (FEM) 
and also the Boundary Element Method (BEM) are the 
most frequently used among many others. The Finite 
Elements Method, which is time consuming in a 3D 
space, is usually used to the solution of the forward 
problem. In the paper the BEM, which represents only a 
discretization of the surface and reduces the number of 
necessary element (as a consequence the computation 
time) is presented. 

 

I.  INTRODUCTION 
HE Boundary Element Method (BEM) is a 

numerical technique for calculating the surface 
potential generated by current sources located in 

piecewise homogenous volume conductor [4], [5], 
[10], [12]. This method is capable of providing a 
solution to a volume problem by calculating the effects 
of the source at the boundaries of the volume. The 
boundaries are the interfaces between regions of 
different conductivity within the volume and also the 
outer surface [4], [5]. 

First step of the BEM is mesh generation. Meshing 
can be defined as the process of division a physical 
domain into smaller sub-domains (elements) in order 
to facilitate the numerical solution of a partial 
differential equation. In BEM the partial differential 
equations with adequate boundary conditions are 
transformed into equivalent integral equations set 
defined only on the surface of the considered volume.  

In the numerical realization of BEM the form of 
boundary elements depend on the problem dimension. 
For the 1D problem – the boundary elements are 
reduced to points, for 2D problem are the form of 
rectilinear or curved segments, and for 3D problem the 
boundary elements are triangular or quadrangular parts 
of a surface [1], [2].   

The original integral equation governing surface 
potential can be approximated as a summation of 
surface integrals of each element. While the potential 
on each element remains to be calculated, it may be 
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assumed to be a simple basis function of some 
unknowns. The potential on an element may be 
modeled as [1], [2], [5], [7], [12]: 
• a constant value (zero-order interpolation 

functions) – the function and partial derivative 
are constant on each element, 

• a linear functions, which attains a different value 
at each of the vertices of the element and the 
function and partial derivative are linear, 

• a square function – the function and partial 
derivative are described as a quadric function 
of the local variables. 

The finite-dimensional approximation of boundary 
integral equations consequently reduces them to 
algebraic equations set. Its solution allows determining 
all unknown function on the boundary of the volume. 
In the next step of BEM finding the unknown function 
in the inside points is possible, without necessity of 
discretization of this domain [2], [7].  

II. FACTORS AFFECTING THE ACCURACY OF BEM IN THE 
FORWARD PROBLEM 

The factors, which limit the accuracy and affect the 
time required to obtain a solution using the BEM are: 
• the choice of basis function, 
• density of elements, 
• shape of each element. 
The choice of basis functions typically is limited to 

either constant or linear basis functions on triangular 
elements.  

Element density depends on the shape and size of 
elements, limiting the extent and shape of actual 
surface. A higher element density provides a more 
accurate representation of the shape and a more 
precise solution [5], [7], [12]. But the total 
computational time of forward problem solution 
dramatically increases for more number of elements. 
The expense of this solution is unacceptable, while the 
main requirements for EIT application are focused on 
image reconstruction in the real time. 

Element shape is most often restricted to flat 
triangular elements to model curved body surfaces, 
due to the underlying simplicity in the mathematical 
formulation of the problem [5], [12].  

Regardless of the number of considered and 
modelled surfaces, the BEM using for realistic-shaped 
surfaces is connected with selection of available basis 
functions and using a specific grid pattern which 
determines element density and shape.   
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III. BEM FOR LAPLACE’S EQUATION 
Integral equations are used to solution to the 

forward problems (analisys) and the inverse problems 
(synthesis and identification) [13]. To the 
transformation of the integral equations, the function 
and Green’s formulas are used. For the 3D domain, 
the Green’s function is: 

 g(A,B)
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gdzie: G'(A,B) = G(A,B) + g(A,B) 
and 

G(A, B) – Green’s function for boundless domain 
g(A,B) – function responsible for satisfying by 

G'(A, B) boundary conditions 
The second Green’s identity (symmetrical), which 

was used in transformation of the integral equation, is 
described as follows:  
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gdzie: Φ - potential in 3D domain Ω 
Let consider the Lapace’s equation in the three-

dimensional domain: 

 ( ) 02 =∇ rΦ Ωr∈∀  (3) 

for the Dirichlet boundary conditions on the surface of 
the volume.  

The Green’s function satisfies the Laplace’s 
equation:  

 02 =∇ G   (4) 

and for 3D domain is: 
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where: 
 r – the distance between M and P 
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Using equation (2) – second Green’s identity we 
get:  
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where functions K1 and K2  are kernels of integral 
transformation, which are defined as follows [10], 
[12]:  
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 (8) 

 K2 (M,P)= G(M,P) (9) 

Let move the interior load point M to the boundary 
which results in the following equation: 
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The coefficients in equation (10) are identified with 
inside point of Ω domain or boundary point C(P0). In 
the case, when the point P is located in the within Ω 
domain, C(P0)=1, and C(P0)=0.5 for boundary points, 
on the assumption that boundary is smooth. In the 
different case this coefficient depends on the solid 
angle (for 3D) in the point of refraction [2], [10]: 

 
( )πn
ΘC i

i 12 −
=  (11) 

where:  n – dimension of space 
Θ - solid angle (for  n=3) 
To calculate the first kernel K1(M,P), the Green’s 

function is differentiated with respect to unit normal at 
the point P, as follows [10], [12]: 
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where the derivatives of the coordinates x, y, z with 
respect to the unit outward normal n in point P are the 
components of the outward normal as follows: 
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and 
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Therefore, the first kernel can be written: 

( ) ( ) ( ) ( )[ ]znMPyMPxMP31 zznyynxx
4ππ

1PM,K −+−+−=  (15) 

To solve the three-dimensional problem 
numerically, the surface has to be discretized into 
elements. The element, which was modeled as a 
constant value have been used in this case. 

IV. ZERO-ORDER INTERPOLATION FUNCTIONS 
Let consider the zero-order interpolation functions 

for flat triangular element [1], [2], [7], [10], [12]. 
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Fig. 1.Local coordinates of the triangle 
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The first derivatives of the standard interpolation 
functions with respect to the ξ1 and ξ2 are given by: 
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The singular integrals in zero-order triangular 
element over a flat area can be evaluated analytically 
[12]. The symbols used in the following closed forms 
are shown in Fig. 2. 
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Fig. 2. Notations for geometric information of triangular element 

V. THE BOUNDARY CONDITIONS 

For Dirichlet boundary conditions vector DΦ=Φ  is 

specified, and vector n∂
Φ∂

 is unknown. For BEM these 
boundary conditions could be formulated as follows: 
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In the Neumann boundary conditions, the vector 
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 is known, and vector Φ  is unknown. 
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In the case of the solution to the forward problem in 
EIT, only 2 elements are imposed Dirichlet boundary 
conditions, and the other m-2 the Neumann boundary 
conditions. 
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After transformation we get: 
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VI. THE FORWARD PROBLEM IN EIT 
The suggested model consists of three layers with 
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adequate number of electrodes: 16, 8 and 4 (Fig.3). 
Some instances of electrodes arrangement and the way 
of electrode-to-electrode collection have been given in 
[6] and [14].  The 3D breast phantom for Optical 
Tomography with three layers of optodes and 3D 
images produced using data acquired by 29 or 30 
detectors per source (for 32 source position) is 
described by [6].  The different approach is presented 
in [14], where the measurement chamber is a 
hemisphere of 16-cm diameter with 64 compound 
electrodes placed in fixed position. 

 

 
Fig.3. Model of computer simulation and arrangement of electrodes 

In order to generate mesh we use Netgen [8], [9]. 
Simulations have been conducted for sphere-shaped 
inside object with radius R=0.8, 1.0, 1.1, 1.2, 1.4, 1.5, 
1.6, 1.8, 2.0, 2.2, 2.4, 2.5 cm and for its different 
locations. 
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Fig. 4. Generated surface mesh 

VII. CONCLUSION 
The main advantages of using BEM in EIT are: 
• dyscretization only boundary of analysed 

domain, what is connected with reduction the 
dimension of the problem and total 
computational time, 

•  finding the unknown function in the inside 
points is possible, without necessity of 
discretization of this domain, 

• this method allows to analyse boundless domain, 
• possibility of approach the electromagnetic field 

analysis. 
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