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 Abstract - The electroencephalogram (EEG) of the 
person who suffers from epilepsy is characterized by the 
occasional spikes between seizures. They are not easy to 
detect even for clinicians. Therefore the automatic 
computerized methods are needed. The paper presents 
the solution to this problem by applying Support Vector 
Machine (SVM) network. The important stage of this 
approach includes the generation of the features on the 
basis of which SVM will recognize all spikes appearing in 
the registered EEG. The results of numerical 
experiments will be presented and discussed in the paper  

 

I.  INTRODUCTION 
The epilepsy is defined as a chronic brain disorder of 
various aetiologies characterized by recurrent seizures 
(ictal disturbances) due to the excessive discharge of 
cerebral neurons [2,3]. Between seizures, the EEG of 
subjects who suffers from epilepsy is characterized by 
the occasional inter-ictal activity in the form of so 
called spikes and wave complexes. A spike is a sudden 
burst of electrical activity lasting up to 70 ms. The 
sharp wave is sort of spike of longer duration, usually 
between 70ms and 200ms. 

 At the EEG recording of the suspected epileptic 
patient we almost always record the inter-ictal spikes. 
Only occasionally a seizure may occur directly at the 
hospital investigation and be recorded by EEG. Hence 
epilepsy is confirmed mainly on the basis of inter-ictal 
recordings found in EEG. Unfortunately the inter-ictal 
activity is usually relatively rare and may be missed by 
the clinicians, who check the recording of the 
suspected patient at the routine inspection. Therefore 
the need for an automated analysis systems, which can 
reliably identify spikes in the recorded EEG waveform 
and recognize between spiky and non-spiky types, are 
highly required.  

This paper will present the solution of an automatic 
system for detecting inter-spike activity by applying 
the time and frequency analysis of the recorded EEG 
waveforms and using the Support Vector Machine 
(SVM) as the final recognizing system. The 
recognition of epileptic activity by SVM will use the 
features generated on the basis of EEG waveform 
analysis. The SVM network itself performs the 
separation of the data corresponding to spiky and non-
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spiky waveforms in this feature space for different 
types of registered EEG signals. 

II. GENERATION OF FEATURES 
Fig. 1 presents the typical EEG recordings of different 
channels containing spikes and sharp waves. The 
spikes are visible in the first four channels as very 
quick sudden bursts of electrical activity of the brain. 
It should be noted that their magnitude as well as 
lasting time are patient dependent.  

Fig. 1 The inter-ictal spikes visible in the excerpt of the EEG 
recording of the epileptic patient 

To develop an automatic system for discovering the 
ictal spikes, we need an efficient feature extraction 
technique. The features should suppress the 
differences between the recorded EEG signals 
belonging to spiky class (or non-spiky – normal class) 
and enhance these differences for signals belonging to 
two different classes (spiky and non-spiky). In our 
work we will rely on the time and frequency 
dependent parameters [1,2,3], developed on the basis 
of the analysis of the  recorded EEG waveforms. 

A.  Time-domain features 
In the time domain analysis we determine the 
parameters associated with the speed of change of 
EEG waveform values v, i.e., slope s=dv/dt and 
sharpness, defined as the second derivative d=d2v/dt2. 
Let us consider three consecutive points of EEG 
denoted by vo, v1 and v2 . The slopes between them are 
equal s0 and s1 and defined on the difference basis. For 
these points we define the average slope between the 
points v0 and v2 as 
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Similarly the average sharpness d is expressed by  
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Two next important time-domain parameters 
determined in this work are the mobility M and 
complexity C. They have been defined as [1,2] 
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The features are associated with the maximal values of 
these four parameters defined above. In one second of 
EEG segment at N Hz of sampling frequency we get 
N-2 values of slope, sharpness, mobility and 
complexity, for which we find the maximum values 
smax, dmax, Mmax and Cmax. We scale them with the 
appropriate normalization factor NF, and define the 
following features 

• normalized maximum slope 
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• normalized maximum sharpness 

dNF
ddn max

max =                (6) 

• normalized maximum mobility 

MNF
MMn max

max =                (7) 

• normalized maximum complexity 

CNF
CCn max

max =                (8) 

The normalizing coefficients NFs, NFd, NFM and NFC 
have been determined in our work for each parameter 
as the average values in the actual one-second time 
segment. 

B.  Frequency-domain features 
The next set of features has been obtained by using 
Fourier transform of the one-second segment. At 
applied N Hz sampling rate we get N/2 points of 
amplitude spectrum of each segment. To reduce this 
number we have represented them by an all pole AR 
model. The concept behind the AR model is the 
assumption that the sequence V=V(f) obtained from 
Fourier transformation of v(t) is the output of a linear 
system driven by a white noise. If the successive 
samples of V are denoted by Vk, we can estimate a 
sample Vk by the linearly weighted summation of the 
previous p sample values 
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where p is the model order and ai are the AR 
coefficients used as the next features of the frequency 
representation. On the basis of previous works in this 
field [1] we have applied p=6 as the optimal AR 
model order. In this way the following features have 
been taken into account in our experiments: snmax, 
dnmax, Mnmax, Cnmax, a1, a2, a3, a4, a5, and a6. All these 
coefficients have been normalized. The ai parameters 
have been normalized by subtracting the mean value 
and dividing by standard deviation of the appropriate 
coefficient. 

As a result in our numerical experiments we have 
applied 10 features forming the input vector to the 
neural classifier. Four of them result from time-
domain representation and six are the AR parameters 
ai following from frequency-domain representation of 
the EEG waveform. All of them have been generated 
for one-second segments of the registered curve. 
These features have been applied as the inputs to the  
Support Vector Machine, working in the classification 
mode. 

 

III. SVM CLASSIFIER 
Basically, the SVM [4,6,7] is a linear machine 
working in the high dimensional feature space formed 
by the nonlinear mapping of the N-dimensional input 
vector x into a K-dimensional feature space (K>N) 
through the use of a function )(xϕ . The equation of 
the hyperplane separating two different classes is 
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is a K-dimensional vector and w – the weight vector of 
the network [ ]T

Kww ,...,1=w . The learning problem of 
SVM is formulated as the task of separating learning 
vectors xi into two classes (di=1 or di=-1) with 
maximal separation margin. The most distinctive fact 
about SVM is that the learning task is simplified to the 
quadratic programming by introducing the so called 
Lagrange multipliers iα . All operations in learning 
and testing modes are done in SVM using so called 
kernel functions, satisfying the Mercer conditions 
[12]. The kernel is defined as )()(),( xφxφxx i

T
iK = . 

The most known kernels are radial Gaussian, 
polynomial, spline or sigmoidal functions [5,6]. 
The solution of the quadratic programming task is 
done with respect to the Lagrange multipliers. The 
output signal y(x) of the SVM network is determined 
as the function of kernels 
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and the explicit form of the nonlinear function )(xϕ  is 
not needed to be known. In this equation index s 
points to the set of Ns support vectors, i.e. the learning 
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vectors xi, for which the decision function 
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variables) is fulfilled with the equality sign. The value 
of y(x) bigger than 0.5 is associated with 1 
(membership of the particular class) and smaller than 
0.5 with –1 (lack of membership). In our task the unity 
output signal of SVM has been associated with the 
spike, appearing in the analyzed period, and zero 
signal with no spike (the normal registered EEG 
waveform). 

IV. RESULTS OF NUMERICAL EXPERIMENTS 
The numerical experiments of detecting the inter-ictal 
spikes have been performed for the EEG recordings 
taken for five different patients. The EEG was 
sampled at N=256Hz with 8-bit accuracy. The data 
base was acquired in Banach Hospital in Warsaw, 
using 20 channel montage. In all cases the recordings 
have been made using the 10-20 international system 
of electrode placement. The length of measuring 
window applied in the work was equal 130 samples. 
The segments of EEG annotated by expert have been 
used in all experiments. They have been arranged in 
such a way that neighboring segments overlap with 
each others. All waveforms have been transformed 
into features, generated for one-second segments 
according to the procedure presented above. The 
typical values of chosen features corresponding to two 
types of waveforms: one corresponding to the epileptic 
patient (spiky - S) and one corresponding to the 
healthy subject (non-spiky – NS waveform) are 
presented in table 1. 

TABLE 1 THE EXEMPLARY FEATURES CORRESPONDING TO SPIKY (S) 
AND NON-SPIKY (NS)  EEG WAVEFORMS 

 S S S NS NS NS 

snmax 4,69 4,63 4,60 2,03 1,8432 1,80
dnmax 2,69 2,71 2,68 2,40 2,20 2,17
Mnmax 1,80 2,13 2,30 2,18 2,75 2,59
Cnmax 2,73 2,27 2,09 2,13 1,82 1,92
a1 -0,70 -0,78 -0,70 0,14 -0,01 0,12
a2 0,55 0,69 0,60 0,09 0,09 0,04
a3 -0,64 -0,75 -0,66 -0,56 -0,71 -0,70
a4 0,66 0,76 0,67 -0,08 0,03 -0,01
a5 0,03 -0,07 0,01 0,34 0,27 0,38
a6 -0,18 -0,11 -0,15 0,04 0,1020 0,21

 

There are visible differences between the epileptic and 
healthy patients for most of the parameters. Especially 
good separating abilities possess the feature snmax, a1, 
a2, a4 and a5. The values depicted in Table 1 stand a 
very good prospect for efficient recognition between 
both types of patients by applying the neural network 
SVM classifier.  

The Support Vector Machine has used in experiments 
the input vectors x composed of features generated in 
a way described in section 2 (ten features). We have 
applied the Gaussian kernel function of the parameters 
adjusted in additional runs of the program. As a result 
of such runs we have chosen the following parameter 
values: C=100 and 7.0=σ , found as the most optimal 
set of network parameters. 

In the numerical experiments with SVM learning, we 
have applied so called cross-validation technique. The 
total set of data (23160 vectors) has been split into 10 
equal size subsets, each containing the same 
proportion of healthy and spiky segments of EEG. 
Nine of subsets have been used in learning and the 
tenth one for testing. The process has been repeated so 
that each of 10 subsets act as the test sets in turn, while 
the other 9 subsets took common part in learning. The 
final classification performance is the average of all 10 
set results. Thanks to application of cross-validation 
technique we remove the dependence on the choice of 
patterns for the test set. By the time of completing the 
procedure each pattern will have appeared once in the 
test set.  

Table 2 presents the results of cross-validation in the 
form of absolute testing errors (number of 
misclassifications of spikes) obtained for all 10 runs of 
the procedure.  

TABLE 2 THE ERRORS OF INTER-SPIKE RECOGNITION FOR 10 RUNS OF 
CROSS-VALIDATION ALGORITHM 

Testing subset Number of 
misclassifications 

1 2 

2 0 

3 0 

4 2 

5 2 

6 3 

7 1 

8 5 

9 3 

10 1 

Total 19 

 

As it is seen from the results, the total number of 
misclassifications was equal 19 for 23160 testing 
samples. The average error of recognition is on a very 
good level. The average rate of misclassifications of 
the spikes within the whole set of data was below 1%. 

 However it should be observed that the testing of the 
system has been done on the same EEG registered for 
the same patients that has been used previously in 
learning phase (different segments of data). The next 
set of experiments has been performed as the real life 
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checking of the learned system in the on-line mode of 
EEG registration of the patients not taking part in 
learning. This time the EEG waveform has been split 
into separate segments and each segment has been 
checked for the presence of spikes. The results of 
automatic system have been compared with the expert 
opinion. For the total of 250 checked segments the 
percentage of misclassification was equal 8.24%. This 
rate of error may be further improved by extending the 
number of patients and EEG waveforms used in the 
learning phase. 

V. CONCLUSIONS 
The results presented in the paper have confirmed, that 
Support Vector Machine combined with time- and 
frequency-domain representation of the EEG 
waveform, proposed in the paper is a good solution to 
the automatic identification of the inter-ictal spikes for 
the confirmation of the epileptic type of the EEG 
waveforms. The method may find practical application 
in developing the automatic system for recognition 
between healthy and epileptic patients on the basis of 
registered EEG waveforms. --++In comparison to 
other automatic methods applying different neural 
solutions [1,8,9], the recognition error is smaller. For 
example the identification of spikes based on the 
radial basis function (RBF) networks presented in [1] 
produces the results with an error in the range of 5-
10%, much higher than the similar figures presented in 
this paper. However it should be noted, that we have 
tested only five patients, so the given figures may be 
not fully representative for large data sets, covering 
many patients, of different waveforms, recorded at 
different conditions. 
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