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 Abstract — The paper deals with nonlinear dynamic 
circuits and brings an efficient algorithm for the 
transient analysis of a broad class of electronic circuits. 
An earlier developed numerical-integration method has 
been implemented using associated discrete models of 
capacitors and inductors. The algorithm overcomes 
drawbacks of the well known and commonly used 
trapezoidal and Gear’s methods and usually is less time 
consuming. Two numerical examples, given in the paper, 
confirm advantages of the algorithm.  

I. INTRODUCTION 
ransient analysis of nonlinear dynamic circuits is 
a basic question of the design of electronic 

circuits. If a circuit is described by a state equation 

 ( ) ( ) 00 xxxfx == t,&  (1) 

then the solution ( )tx  can be found using a multistep-
integration method [1]-[8]. The trapezoidal scheme is 
assumed to be the best of general-purpose methods for 
solving the initial-value problem (1), whereas Gear’s 
scheme is the most useful for solving stiff state space 
equations. These methods are implemented in SPICE. 
Although the trapezoidal and Gear methods have very 
good stability properties they suffer from the 
following shortcomings. The trapezoidal method may 
generate spurious oscillations when the transient 
solutions change fast. On the other hand Gear’s 
method may give damped oscillations whereas the real 
solutions are sustained or unstable. To overcome these 
drawbacks the step size should be decreased to very 
small value, when the transient solutions vary very 
fast. However, if the step size is too small, a large 
number of time steps will be necessary to cover the 
specified solution time interval and the amount of 
computation will increase substantially. Moreover, the 
step size cannot be too small if we wish to obtain the 
solution in the real time. This is why we assume in this 
paper a limit for the step size. 

To avoid drawbacks of the above mentioned 
methods a new family of numerical integration 
methods has been developed in [9]. All the methods 
are implicit, second-order, A-stable and they depend 
on a parameter which is allowed to be changed during 
the computation process according to a proposed 
strategy. The variable step-size version of the method 
is as follows 

                                                           
 The authors are with the Department of Electrical and Electronic 

Engineering of the Technical University of Lodz, ul. 
Stefanowskiego 18/22, 90-924 Lodz, Poland, e-mail: 
michtade@p.lodz.pl  

( ) ( )

( ) (2)2
2

21

1
1

2

1
211

2
2

211

2
2

2

22
1

2
1

2
1

2

++

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

++−+

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
++

+
−=

kk

kkk

x
h

hh
h

x
h

x
hhh

h
x

hhh
h

x

&& θθ

θθ

where [ ]10,∈θ . In the special case where hhh == 21 , 
equation (2) reduces to  
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For the end values 0=θ  and 1=θ  (3) becomes the 
trapezoidal scheme [5] 

 ( )2112 2 ++++ ++= kkkk xxhxx &&  (4) 

or the Gear scheme [5] 

 212 3
2

3
4

3
1

+++ ++−= kkkk xhxxx & . (5) 

A general-purpose method for solving the initial-value 
problem must allow the step size to be varied. The 
method should change to larger step size when the 
transient has changed slowly and to smaller step size 
when the transient has changed fast. This is why we 
use the variable step size version (2). It can be shown 
that the principal local truncation error of the method 
(2) is given by 
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The computation process is carried out using the 
following strategy. We compute ( ) ( )[ ]T

TnTT εε K1=ε  
and divide each component of this vector by the 
corresponding component of 2+kx . Next we find the 
quantity having the largest absolute value and label it 
M. If 34 1010 −− ≤≤ M  the step remains unchanged. If 

310−>M  the result obtained is skipped and the step is 
decreased twice. Simultaneously the parameter θ  is 
increased according to the formula: θθ 8020 ..new += . 

If 410−<M  in two subsequent points the step is 
doubled and θ  is decreased according to the formula 

θθ 80.new = . The above procedure is realized for the 
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step sizes framed by the assumed minimal and 
maximal values. 

II. EFFICIENT IMPLEMENTATION OF THE METHOD 
Many nonlinear dynamic circuits encountered in 
practice do not have the state representation (1) and 
the method described in Section I cannot be directly 
used. Therefore, in order to implement the method we 
apply the known idea of discrete models of capacitors 
and inductors. 
Let us consider a nonlinear capacitor, shown in Fig. 1, 
described by 

 ( )
t
qi,vq̂q

d
d

==  (7) 

Fig. 1. A nonlinear capacitor. 

and apply equation (2) rearranged to the form 
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As a result we obtain 

 ( ) 222 +++ += kkk Ivgi  (9) 

where 

 ( ) ( ) ( )22112 ++ = kk vq̂,h,havg θ  (10) 
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Equation (9) describes a discrete model of the 
nonlinear capacitor composed of a nonlinear resistor 
and current source connected in parallel (see Fig. 2), 
where the source current depends on the previously 
computed voltages kv , 1+kv  and current 1+ki . 

Fig. 2. Discrete model of the nonlinear capacitor. 

If the capacitor is linear ( )Cvq =  then equation (9) 
becomes the linear equation 

 222 +++ += kkk ÎGvi  (12) 

 ( )C,h,haG θ211=  (13) 
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Equation (12) represents a discrete model of the linear 
capacitor, as shown in Fig. 3. 

Fig. 3. Discrete model of the linear capacitor. 

Similarly, the discrete models of inductors can be 
formed. For a nonlinear inductor (see Fig. 4) 
represented by 

 ( )
t

v,iˆ
d
dφφφ ==  (15) 

we create the discrete model shown in Fig. 5, 
described by the equation 

 ( ) 222 +++ += kkk Virv  (16) 

where 

 ( ) ( ) ( )22112 ++ = kk iˆ,h,hair φθ  (17) 
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Fig. 4. A nonlinear inductor. 

Fig. 5. Discrete model of the nonlinear inductor. 

If the inductor is linear ( )Li=φ , then (16) becomes 
the linear equation 
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 222 +++ += kkk V̂RiV  (19) 

 ( )L,h,haR θ211=  (20) 
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Equation (19) enables us to form the discrete model of 
the linear inductor (see Fig. 6). 

Fig. 6. Discrete model of the linear inductor. 

Applying the discrete models of capacitors and 
inductors we transform the dynamic circuit into a 
sequence of resistive circuits. The resistive circuits are 
described by node equations and analyzed using the 
Newton-Raphson algorithm. In any step the 
parameters of the models are updated according to the 
equations (9)-(21) and the strategy described in 
Section I. 

III. NUMERICAL EXAMPLES 
To illustrate the algorithm developed in this paper we 
consider two numerical examples. 
 
Example 1 
 

Let us consider the univibrator shown in Fig. 7 [10] 
including the operational amplifier represented by the 
Chua-Lin model [5] with a single pole. We wish to 
find the voltage ( )tv3  within the time interval 
[ ]ms100, , with the zero initial conditions. Let the 
initial, minimal and maximal step sizes be 40µs, 10µs, 
100µs, respectively. The initial values of θ is assumed 
to be zero. 

Fig. 7. The univibrator. 

A part of the transient solution provided by the 
trapezoidal method, exhibiting spurious oscillations, is 
shown in Fig. 8. 

The total number of the time steps is equal to 955 and 
the total number of the Newton-Raphson iterations is 
equal to 3032. 
The same part of the transient solution obtained using 
the proposed method is shown in Fig. 9. The total 
number of the time steps is equal to 285, whereas the 
total number of the Newton-Raphson iterations is 
equal to 762. 

Fig. 8. A part of the transient solution of the univibrator provided by 
the trapezoidal method. 

Fig. 9. The same part of the transient solution as in Fig. 8 obtained 
using the proposed method. 

In this case the spurious oscillations are significantly 
reduced and immediately damped. Gear’s method 
gives the transient solution similar to the solution 
obtained by the proposed method but it requires larger 
number of the time steps and the Newton-Raphson 
iterations. 
 
Example 2 
 

Figure 10 shows a linear waveform generator [11] 
containing a diode and four transistors represented by 
the Ebers-Moll models. We want to find the voltage 
( )tv  in the time interval [ ]ns2000, , with the zero 

initial conditions. Let the initial, minimal, and 
maximal step size be 2ns, 400ps, 4ns, respectively. 
The initial value of θ is assumed to be zero. 
A part of the transient solution provided by the 
trapezoidal method, exhibiting spurious oscillations, is 
shown in Fig. 11. The total number of the time steps is 
equal to 316 and the total number of the Newton-
Raphson iterations is equal to 1331. 
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Fig. 10. The linear waveform generator. 

Fig. 11. A part of the transient solution of the linear waveform 
generator provided by the trapezoidal method. 

The same part of the transient solution obtained using 
the proposed method is shown in Fig. 12. The total 
number of the time steps is equal to 245, whereas the 
total number of the Newton-Raphson iterations is 
equal to 904. 
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Fig. 12. The same part of the transient solution as in Fig. 11 obtained 
using the proposed method. 

Similarly as in example 1 the spurious oscillations are 
significantly reduced and immediately damped. Gear’s 
method gives the transient solution similar to the 
solution obtained by the proposed method but it 
requires larger number of time steps and the Newton-
Raphson iterations. 

IV. CONCLUSIONS 
The described in this paper implementation of the 
proposed method, using the discrete models of 
capacitors and inductors, enables us to analyze a broad 
class of electronic circuits. Numerical examples 
confirm that the method is efficient and overcomes the 
main drawback of the trapezoidal scheme. In the case 
where the spurious oscillations are generated by the 
trapezoidal scheme the proposed method effectively 
damps them and leads to the solutions in shorter time. 
Furthermore, in all analyzed circuits the proposed 
method requires fewer time steps and the Newton-
Raphson iterations than the Gear algorithm. 
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