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  Abstract — This paper presents higher-order Finite-
Difference Time-Domain (FDTD) methods with 2nd -
order of accuracy in time and 6th-, 8th–order of accuracy 
in space for calculating lightning-induced voltages on 
power lines. Comparisons between numerical solutions 
using various numerical schemes are illustrated on 
graphs. It is shown that the results obtained by using the 
highest-order scheme have the highest accuracy. This 
algorithm can be improved as a new basis for solving 
general EM coupling or telegraphy equations. 

Keywords: Higher-order FDTD method, overhead 
power lines, lightning-induced voltage.  

I. INTRODUCTION 
HE voltages induced by electromagnetic fields 
radiated by exciting sources as lightning, antenna 
or a nuclear detonation on power lines represent 

problems that are considered by many authors all over 
the world [1]–[4]. The calculation is based on solving 
EM coupling equations of transmission line using 
analytical methods [1]–[2] or FDTD method [3]–[4] 
with the standard scheme (2,2). 

In this paper, we proposed a higher-order FDTD 
method [FDTD(2,6), FDTD(2,8)] for solving EM 
coupling equations by their discrete approximation at 
every position along the line and the time. The 
algorithm is based on higher-order schemes for 
voltage and current variables expanded by Taylor 
series after the second order truncating term. The 
results are discussed.   

II. HIGHER-ORDER FDTD SCHEMES 
Using Taylor series expansion, we can obtain 

higher-order finite difference formulae for partial 
derivatives around grid points of our interest.  

The expansions of Taylor series for a function 
f(x,t) are expressed as: 
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kk ff = .                  (5) 

The spatial derivative expressed in the form of a 
linear combination of the function values at the nodal 
points are [5]  
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From (3)–(6) the fourth-order centered-difference 
approximations for the first and second-order spatial 
derivatives of a function f(x,t) at grid point (k,n) are 
found as [6]  
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For finding finite difference formulae of higher 
accuracy, the spatial derivative can also be expressed 
in the same way as in (6), with higher-order truncating 
term given as 
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From (2)–(5) and (9) we obtain the sixth-order 
centered-difference approximations for the first and 
second-order spatial derivatives of a function f(x,t) at 
grid point (k,n) as   
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In same way as in (6) and (9), the eighth-order 
finite difference approximation of the spatial 
derivative is written as  
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From (1)–(5) and (12) we obtain the eighth-order 
centered-difference approximations for the first and 
second-order spatial derivatives of a function f(x,t) at 
grid point (k,n) as [9]   
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III. HIGHER-ORDER FDTD FOR EM COUPLING 
EQUATIONS 

A. EM coupling equations of single-phase line 
 
 
 
 
 
 
 
 
Fig.1. Lightning return stroke nearby transmission line.  

The equations of a lossless multiconductor 
transmission line including EM coupling are expressed 
as follows [3]: 
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where  L and C are the per-unit length inductance and 
capacitance matrices of a the three-phase line, see 
[11], I(x,t), Vs(x,t) the column vectors of scattered 
voltages and currents along the lines and Ei

x(x,h,t) the 
column vectors of the incident horizontal electric field 
along the x axis at the height of the conductor of the 
three-phase line [2].  

After differentiating (15) and (16) with respect to 
variable x, these EM coupling equations may be 
rewritten as [3] 
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Writing the Taylor series for the functions of 
voltage and current for the time variable with second-
order truncating term:  
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Substituting temporal derivatives of voltage and 
current from (15)–(18) into (19)–(20) we obtain 
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B. Solutions Using FDTD(2,6) Scheme 
The second-order formula to the first-order 

temporal derivative of the incident horizontal electric 
field reads  

1 1
, ,( , , )
2

n n
k kx h t

t t

+ −−∂
=

∂ ∆
x xi

x

E E
E .       (23) 

We apply sixth-order formulae (10)–(11) to the 
first and second-order spatial derivatives of voltage 
and currents and put them into (21)–(22). Now they 
are written in the FDTD form as 
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C. Solutions Using FDTD(2,8) Scheme 
We express the first and second-order spatial 

derivatives of voltage and currents from eighth-order 
formulae (13)–(14) and insert them into (21)–(22) so 
that 
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D. Boundary conditions: 
The boundary conditions at two line terminations 

for scattered voltages are 
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where Ei
z(x,z,t) is an incident vertical electric 

field, see [2] and Z0, ZL denote the 
impedance matrices at two line terminations. 

IV. TOTAL INDUCED VOLTAGES 
The total induced voltage at each observation point 

along the line can be expressed by the sum of scattered 
voltage and the finite integral of incident vertical 
electric field that is also called incident voltage, see [1]  
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where Vi(x,t) is the incident voltage.  

V. NUMERICAL RESULTS 
We consider an example [1], in which the height of 

the overhead line is 10 m and its length is 1 km. The 
lightning striking point has x0 = -500 m and y0 = 50 m 
as indicated in Fig. 1. This current has a peak value of 
12 kA, a maximum time-derivative of 50 kA/µs, a 
return-stroke velocity of 1.3·108 m/s. Components of 
the horizontal and vertical fields of lightning are 
calculated from analytical formulations in [2]. 

Calculated results of three components of 
lightning-induced voltages at observation points along 
the lossless transmission line using (2,8) FDTD 
method are illustrated in Figs. 2–4. Curve 3 is the 
scattered voltage that is computed from EM coupling 
equation of transmission line adding boundary 
conditions at two line terminations, curve 2 is the 
incident voltage that is computed from the incident 
vertical electric field and curve 1 is the total induced 
voltage that is calculated by sum of curves 2 and 3. In 
these figures we can show that the components of the 
incident voltage and total induced voltage are always 
positive waveforms, but the component of scattered 
voltage can be unipolar or negative waveforms that 
depend on observation points along the line. 
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Fig.2. Higher-Order (2,8) FDTD solutions of induced voltages at x = 
0 m  
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Fig.3. Higher-Order (2,8) FDTD solutions of induced voltages at x = 
500 m  
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Fig.4.  Higher-Order (2,8) FDTD solutions of induced voltages at 
x = 1000 m 

Results of comparisons between various higher-
order FDTD solutions of total induced voltage at three 
observation points along the line are illustrated in 
following Figs .5–7. Curve 4 is a solution using (2,2) 
FDTD scheme, curve 3 uses (2,4) FDTD scheme, 
curve 2 uses (2,6) FDTD scheme and finally curve 1 
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(2,8) FDTD scheme. It can be seen that the error 
between solutions of peak values is largest at two line 
terminations and will decrease toward the middle of 
the line. (2,8) FDTD scheme for computing lightning 
induced voltages provides the highest accuracy.   
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Fig.5. Comparison between (2,2), (2,4), (2,6) and (2,8) FDTD 
solutions of total induced voltages at x = 0 m  

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

time [µs]

Li
gh

tn
in

g-
In

du
ce

d 
V

ol
ta

ge
 [k

V
]

Higher-Order FDTD Solutions of Lightning-Induced Voltages

(2,8) FDTD Solution - curve 1
(2,6) FDTD Solution - curve 2
(2,4) FDTD Solution - curve 3
(2,2) FDTD Solution - curve 4

(4) 

(1) 
(2) 

(3) 

 
Fig.6. Comparison between (2,2), (2,4), (2,6) and (2,8) FDTD 
solutions of total induced voltages at x = 500 m  
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Fig.7. Comparison between (2,2), (2,4), (2,6) and (2,8) FDTD 
solutions of total induced voltages at x = 1000 m  

VI. CONCLUSION 
The FDTD methods with standard scheme are 

popular for computing technical problems. In this 

paper, higher-order FDTD formulae derived from the 
Taylor series expansion with second-order accuracy in 
time and fourth-, sixth-, eighth-order accuracy in space 
are presented. However, the fourth-, sixth- and eighth-
order finite difference formulae of the temporal 
derivatives are found in the same way as the spatial 
derivatives. They can be used for calculating problems 
in fields of mechanical engineering, fluid dynamics, 
electromagnetic fields… It can be shown that the 
calculated results reach the highest accuracy when we 
use higher-order (2,8) FDTD scheme. This algorithm 
can be used for solving general EM coupling or 
telegraphy equations on lossy or lossless transmission 
lines above ground of finite electrical conductivity. 
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