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 Abstract — In this paper we propose the selection 
method for choosing the nonlinearities in ICA algorithms 
for the signals that have alpha-stable distributions. The 
computer simulations were conducted to confirm the 
correctness of the approach.  

I.  INTRODUCTION 
NDEPENDENT Component Analysis (ICA) is a 
very intensively developed field of the science, 
which has many applications across a variety of 

industries like telecommunication, electricity, 
medicine, economics, etc. The ICA methods are 
especially used for blind signal separation (BSS). 
There exist many ICA methods and algorithms based 
on different rules. The classical ICA methods are 
Natural Gradient algorithms, which have the efficacy 
directly connected with the used nonlinearities. The 
selection of the nonlinearities depends on the 
probability distribution of the processed signals. 

In practice, we often have to do with the impulse 
signals where quite suitable approach can be the 
application of alpha-stable distributions. Signals with 
alpha stable distributions have characteristic properties 
called “fat tails”. In this paper we present the concept 
and the findings for the choice of the nonlinearities for 
alpha-stable distributions in Natural Gradient 
algorithm.  

We will take into the consideration the standard in 
ICA linear model of observed variables. It will be 
called a generative model. Let us assume that the m-
dimensional observation vector x(t) is generated by 

 
 )()( tt Asx =  (1) 
where: 
1. nm    ×ℜ∈A  is the unknown full column rank 

mixing matrix   nm  ≥ ,  
2. s(t) is the n-dimensional basis nongaussian 

(except one) vector with mutual independent 
variables. 

 
To estimate independent components we are 

looking for linear transformation that will be an 
inverse operation to mixing. The basis difficulty is 
lack of knowledge both A and s in (9). This fact 
introduces two ambiguities in the solution. It is 
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impossible to recover original scale and order of s. So, 
we accept estimated signals rescaled and reordered in 
comparison with original signals. Let W describe 
demixing matrix and    

 )()( tt Wxy =  (2) 

We obtain independent components in y if we 
find such matrix W that 

  
 PDWAG ==   (3) 
 
where G is the global transformation matrix which 
combines the mixing and separating system (G is 
called the generalized permutation matrix), P is some 
permutation matrix, D is some scaling  non-singular 
diagonal matrix. 

To obtain independent components we need to 
analyze statistical structure of y. The joint probability 
of independent variables can be factorized by the 
product of the marginal probabilities 
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As the practical measure of difference between 
)(yyp and )(yyq  we take Kullback-Leibler 

divergence 
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We are looking for a matrix W that mineralizes (5) so  

 ))(||)((min WxWxW yyW
qpDKLopt =  (6) 

The natural gradient optimisation method [1] 
applied to (6) gives us an update rule for matrix W  

 [ ] )( )())(()()( ttttt T WyyfIW −=∆ µ  (7) 

where 

 [ ]Tnn yfyf )(),...,()( 11=yf  (8) 

with 
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Optimal non-linearities used in (9) need the 
knowledge of source probability distributions what is 
impossible in general. To avoid these disadvantages 
we can use extended version of  (7)  
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 [ ]  )( ))(())(()()( ttttt T WygyfIW −=∆ µ  (10) 

with adaptive choice of non-linearities [2] 
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where 2≥ir , 0≥δ . 
Term )(4 iyκ means normalized kurtosis: 

 3}{/}{)( 224
4 −= iii yEyEyκ  (11) 

The main problem with nonlinearities choice based 
on kurtosis is fact that not always the statistics do 
exist.  There are many distributions without higher 
order moments as e.g. the family of α -stable 
distributions, which do not posses statistics of order 
higher than second.  
 

II.  USING NONLINEARITIES FOR THE α -STABLE 
DISTRIBUTIONS 

The α -stable distributions can be defined as 
distributions that satisfied stability property what 
means that if 321 ,, xxx  are independent α -stable 
random variables 

One of the main problems connected with the α -
stable distributions is the lack of the close expressed 
form for their pdf with only small number of 
exceptions (Cauchy, Pareto, Gaussian). In general case 
the distribution is given by characteristic function of 
the form: 
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where 20 ≤< α  describes “thickness” of the tails, 
0>σ - dispersion, 11 ≤≤− β - symmetry and ℜ∈µ - 

location. The α  parameter is crucial for description of 
the α -stable distributions, because for given 
distribution there are no moments higher than α . If 

0=β , then distribution is called symmetric α -stable 
( SSα ), and this kind of pdfs will be considered in this 
article.  

Using expansion of the pdfs into series we can 
estimate the shape of the nonlinearities for functions 
with various α  (Fig. 1a-c). 

Based on numerical simulation we propose a 
general form of nonlinearities for α -stable 
distributions as: 
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where typically αθ =  or 1=θ . Example theoretical 
nonlinearities for { }5,1;0,1;5,0∈α  are shown in 
Fig. 1d-f. 
 

 
Fig. 1.  Nonlinearities obtained empirically (a-c) and theoretically 
(d-f) for different α  

 
It should be noted that there exist the family of 

alpha-stable distributions, called sub-gaussian alpha 
stable distributions, that are always mutually 
dependent. For such distributions our methods is not 
addressed of course.  

 

III.  ALPHA PARAMETER ESTIMATION 
The crucial thing in our considerations is proper 

alpha parameter estimation. There are many method of 
estimation of alpha parameter. For example we can 
utilize following methods for our purpose: 
 
1. For Symmetric Alpha Stable ( SSα ) distributions 
we can easy compute α  from  

 ( )5.0
6

2
2

2 −= −
xz απσ  , (14) 

where 2
zσ  is second moment of |)ln(| xz = . For 

adaptive learning we can introduce following on-line 
rule     

 [ ] 5||)}1({)1(6)( 22
2 ++−−= ztzEtx ηη

π
α  (15) 

 
 2. For signals witch can be treated as fractional 
Brownian Motion we have  

 
H
1

=α   (16) 

where H is Hurst (or Holder) exponent.  
 

IV. ALGORITHM FOR FINDING H-EXPONENTION 
For finding the H  exponent Hurst proposed the 
SR /  method. Let’s consider a series of N  

observations. The algorithm is as follows: 
1. Divide the series of observations into d  sub-series 

with n  observations, where Nnd =× ;  
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2. For every series dm ,...,1= : 
a. Find the mean mE  and the standard deviation 

mS ; 
b. Rescale the observations miZ ,  by subtracting 

the mE : mmimi EZX −= ,, ; 

c. Cumulate the observations: ∑ == i
j mjmi XY 1 ,,  

for ni ,...,1= ; 
d. Calculate the range: 

{ } { }mnmmnmm YYYYR ,,1,,1 ,...,min,...,max −= ; 
e. Rescale the range by standard deviation 

mm SR ; 
3. For d  sub-series of the length n  find the mean 

( ) ∑ =⋅= d
m mmdn SRSR 1

1  as an estimate for 
( )nSRE ; 

4. Given ( )nSR  for different n  you will find H  as 
the coefficient of the following regression: 

 ( ) nHcSRE n lnlnln ⋅+= . (17) 

 

V.  COMPUTER SIMULATIONS 
In this section we confirm validity of above 

described method by computer simulation. We mix 
four computer generated alpha stable signals with 

5.1=α  by arbitrary matrix A. The all the elements of 
mixing  matrix are drawn  form  uniform  distribution 
(-1,1). Both signals and matrix are assumed to be 
unknown. To measure of the performance of our 
method we use performance index defined as  
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where ijg is the (i,j) element of global system matrix 
G=WA. When performance index is zero the perfect 
estimation is achieved. 

Example of obtained results are presented in Fig.2. 
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Fig. 2  Source a), mixed b), estimated c) signals and performance 
matrix G of  considered example. 
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VI.  CONCLUSIONS 
The application of the nonlinearities in the form 

presented above allows us for practical adaptation for 
wide range of alpha-stable distributions. The computer 
simulations confirmed the efficacy. One of the key 
issues is estimation improvement of the alpha 
parameter. In this work the most popular estimators of 
alpha were used. It is still the open question the way of 
conducting the preprocessing stage in case the extreme 
values. In such situation the most appropriate 
approach is to eliminate these samples with regard to 
numerical stability of the algorithms.   
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