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 Abstract — The paper presents and compares the 
performance of four different prewhitening algorithms of 
the signals in the presence of white noise. They have been 
applied to the decorrelation of the mixed signals and may 
find application in the solutions of the blind source 
separation systems. 

I. INTRODUCTION 
The temporal, spatial or temporal-spatial decorrelation 
(prewhitening) plays an important role in signal 
processing. Prewhitening is often necessary condition 
for the stronger stochastic independence criteria. It is 
for example the basic step in blind separation (BSS) or 
independent component analysis (ICA) tasks. After 
prewhitening the BSS or ICA become somewhat 
easier and less ill conditioned, because the subsequent 
separating system is described by an orthonormal 
matrix for real valued signals. Furthermore the 
decorrelation technique can be used to identify the 
mixing matrix and perform blind signal separation for 
colored signals. 

In this paper we present and compare four methods 
of prewhitening of the signals in the presence of noise. 
Three of them are based on the modified eigenvalue 
analysis and one applies the Gram-Schmidt 
orthogonalization. 

II. BASIC PREWHITENING ALGORITHM 

A random, zero mean vector nR⊂y  of dimension n is 
said to be white if its covariance (correlation) matrix is 
an identity matrix, i.e., Ryy=E{yyT}=1n. The white 
signals form the correlation matrix which is diagonal. 
It means that such signals are not correlated with each 
other. Any set of vectors mR⊂x  can be decorrelated 
(whitened) by applying some preprocessing stage. The 
whitening procedure is equivalent to the linear 
transformation of the vector x. The whitened vector y 
is described by the relation 
 Wxy   =  (1) 

where W is an mn ×  whitening matrix. If n<m the 
matrix W simultaneously reduces the dimension of the 
data vectors from m to n. If n=m the size of the 
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whitened vector is the same as original one. The 
vectors y are mutually uncorrelated and have unit 
variance. It means that  

 { } { } n
T

xx
TTT

yy EE 1WWRWWxxyyR ====  (2) 

In general situation the measured sensor signals are 
mutually correlated, i.e., the covariance matrix Rxx is 
not diagonal one. However it is always symmetric and 
usually positive definite. It means that it can be 
decomposed using the eigenvalue decomposition as 
follows 

 T
xxxx

T
xxxxx VLLVVLVR 2/12/1==  (3) 

where Vx is an orthogonal matrix and Lx is a diagonal 
matrix with all nonnegative eigenvalues λi, that is 
Lx=diag{λ1, λ2, …,λm}.  The columns of the matrix Vx 
are the eigenvectors corresponding to the appropriate 
eigenvalues. Thus, assuming that the covariance 
matrix is positive definite, the required decorrelation 
matrix W can be computed as follows 

 T
xx VLW 2/1−=  (4) 

If some eigenvalues of Rxx are zero we can take only 
positive eigenvalues and the eigenvectors associated 
with them.  
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Fig.1 Scatter plots illustrating the whitening transformation for two 
sensor signals  

Fig. 1 presents the results of whitening of two input 
signals generated according to different distribution. 
Fig. 1a corresponds to two randomly generated signals 
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and Fig. 1b corresponds to 2 deterministic sinusoidal 
signals disturbed by white noise of normal 
distribution. The points denoted by x are original 
points and the symbols o are associated with whitened 
signals. As it is seen the whitened signals are 
distributed in a wider space (the typical situation for 
the uncorrelated signals). 

III. THE MODIFIED PREWHITENING ALGORITHMS  
The main problem of whitening is due to the noise that 
is usually contained in the measured values. Let us 
assume the noisy signal x=s+n, where s is the signal 
and n – the random white noise of the standard 
deviation σn. The eigenvalues corresponding to the 
noise are usually very small, so their inverse very 
high. It means that the whitening algorithm described 
by the relations (3)-(4) amplifies the noise in the 
transformed signals. To process the noisy data we 
need some modifications of the whitening procedure. 
In this paper we present three different modified 
versions of the prewhitening algorithms and compare 
their performance at the presence of the noise. 

A. Algorithm with bias removal 
The most important point in this approach is removing 
the estimated noise components of the signal. Let us 
denote the noise variance in the system by 2

nσ . It is 
easy to show that at random white noise, uncorrelated 
with the signal s, the autocorrelation matrix Rxx, 
calculated in a standard way (without delays) may be 
presented in the form  

 nnvvxx RRR +=  (5) 

where Rvv is the autocorrelation matrix of signal v=As 
(A – the mixing matrix)  and Rnn – the autocorrelation 
matrix corresponding to the noise n, i.e., 

{ }T
nn E nnR = . Taking into account the uncorrelated 

character of the noise, we can estimate the 
autocorrelation matrix of the signal as 

 1RR 2
nxxvv σ−=  (6) 

where in this equation 2
nσ   represents the estimation of 

the noise variance. It is straightforward to note that the 
matrix Lv is equal   
 { }22

1 ,..., nmnv diag σλσλ −−=L   (7) 
where jλ  (j=1, 2, ..., m)  are the eigenvalues of the 
correlation matrix Rxx of measured signals x. In such 
case we can apply the standard eigenvalue 
decomposition to the matrix Rvv,  

 T
vvvvv VLVR =  (8) 

and define the whitening matrix W on the basis of this 
decomposition 

 T
vv VLW 2/1−=  (9) 

The key point in this approach is the accurate 
estimation of the noise variance. Generally this value 
is not known a’priori and should be estimated on the 

basis of measurement of the noisy signal. The most 
straightforward way to perform such estimation is to 
calculate the autocorrelation matrix Rxx of the 
observations and to analyze the distributions of the 
eigenvalues of this matrix. Irrespective of the noise 
level there is a visible knee point in this distribution. 
The eigenvalues corresponding to the signals are 
relatively high. The other small values (usually of 
negligible magnitudes) represent the noise. The 
variance of the noise may be estimated as the mean of 
all these insignificant eigenvalues []. If only K 
eigenvalues of the autocorrelation matrix are 
considered, the remaining last (m-K) eigenvalues 
represent the noise. The variance of the noise may be 
then estimated as  
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This estimated value is substituted in the equations (7). 

 
Fig. 2 The distribution of the eigenvalues of the correlation matrix at 
three different SNR values for the set of signals containing 3 noisy 
signals and 7 random noise components 

 
The typical situation corresponding to the noisy 

case is presented in Fig. 2. It depicts the distribution of 
the eigenvalues of the system created by three signals 
corrupted by the noise and mixed with additional 7 
white random noise signals of different variances (3-
dimensional “signal space” and 7-dimensional ”noise 
space”). The knee point indicating the number of 
signals (3) is easily visible, irrespective of the noise 
level. 

B.  The regularization method 
The main drawback of the previous method is its 
relative sensitivity to the estimation accuracy of the 
noise, which can be a source of significant error. 
There is another way to compensate for this poor 
performance of the main whitening algorithm at high 
noise. High noise, as was noted before, is reflected by 
small eigenvalues, resulting in magnifying the noise in 
the whitened signals due to its inverse relation to the 
eigenvalues of the considered system, 
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L . In defining 

the matrix Lx we take into account the noise variance 
2
nσ  and assume its modified form as given by (7). For 

the eigenvalues iλ  larger than the noise variance we 
can apply the following approximation 
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matrix W in the regularized form, described by  
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which is less sensitive to the noise variance. 

C.  Gram –Schmidt orthogonalization 
The Gram-Schmidt orthogonalization performs the 

whitening of the signals sequentially, vector after 
vector using simple transformation scheme and as a 
result decomposes the given matrix X into product of 
the orthogonal matrix Q and upper diagonal matrix U 
 QUX =  (12) 
In Gram-Schmidt orthogonalization the transformation 
of X into Q and U is done sequentially step after step 
and mathematically it can be presented in the form 
 11 xq =  (13) 
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for k=2, 3, ..., K and  i = 1, 2, ..., k-1. In these 
expressions qi is the ith column of matrix Q and uik is 
the ikth element of matrix U. 

Applying this algorithm to our case let us 
decompose the matrix XT into Gram –Schmidt form as 
XT=QU. It is easy to prove that the whitening matrix 
W is equal 

 [ ] 1−
= TUW  (16) 

IV. THE MEASURE OF WHITENING QUALITY 
The numerical experiments comparing different 
whitening algorithms have been performed on the 
signals generated in the typical structure presented in 
Fig. 3. The signals are mixed by using the mixing 
matrix A. The noise of the variance 2

nσ  is added and 
the measured signals x are then decorrelated by using 
the whitening matrix W. 

 
 

Fig. 3 The structure of signal processing used in numerical 
experiments of whitening 

 
To compare different prewhitening algorithms we 
have to define the quality measure, determining the 
accuracy of prewhitening. The most important 
requirement is the orthogonality of the output signal, 
irrespective of the input noise. Let us assume that the 
source signals are statistically independent, that is the 
autocorrelation matrix Rss is diagonal, Rss=D. Taking 
into account that the observed signals forming vector x 

are described by the matrix relation x=As+n, the 
correlation matrix Rxx fulfills the relation 
 nn

T
ssxx RAARR +=  (17) 

The whitened signals forming vector y=Wx are 
characterized by the correlation matrix Ryy satisfying 
the following equation 

 T
nn

T
ss

T
xxyy WWRWAWARWWRR +== )(  (18) 

Taking into account that Rss=D the last relation can be 
presented in the form 
 T

n
T

yy WWWADWADR σ+= )( 5.05.0  (19) 
The whitening of the output signals corresponding to 
the source signals s means that the following condition 
must be satisfied 
 1WAD =5.0  (20) 
On the basis of this we can define the error indicator 
of the whitening process as the Frobenius norm of the 
residue matrix 
 

Fwe 1WAD −= 5.0  (21) 

The smaller the value of the error ew, the better the 
quality of whitening process. 

V. THE RESULTS OF NUMERICAL EXPERIMENTS 
The numerical experiments have been performed for 
different arrangements of signals, corrupted by the 
white noise of uniform and normal distributions.  
 
a) 

 
b) 

 
c) 

 
Fig. 4  The dependence of whitening error indicator on SNR for 
different noise distributions and different signals: a) 3 sinusoidal 
signals, b) 4 independent speech signals, c) 10 dependent speech 
signals all corrupted by noise (in all cases dimension of signal plus 
noise was equal 10) 
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All methods of whitening have been investigated at 
different signal-to-noise (SNR) ratios, changing from -
20 to 30dB. The quality of whitening procedures has 
been measured by an error indicator (21). Different 
sets of signals and noise have been tried. The chosen 
results are presented in Fig. 4. In the first case (Fig. 
4a) the “signal space” has been formed by 3 synthetic 
sinusoidal signals and the “noise space” by 7 noise 
components. In the next experiments we have changed 
the types of signals, as well as their number. We have 
applied: 4 independent speech signals combined with 
6 noise components (Fig. 4b), and 10 dependent 
speech signals (the same sentence told by 10 different 
people) presented in Fig. 4c. As it is seen in almost all 
cases the best performance at different SNR values has 
been observed for bias removal method. In our 
opinion this method should be suggested for practical 
applications. However it is also seen that in the case of 
dependent signals (case c) the basic methods (the first 
and Gram-Schmidt) seem to be competitive. 

The important observation drawn from these 
experiments is that the performance of the algorithm is 
practically independent on the type of distribution of 
the white noise. On the other side the dependency of 
the signals is an important factor. When assumption of 
independency is not valid the performance of all 
algorithms deteriorates. 

a) 

 

b) 

 
Fig. 5 The dependence of error of whitening on the SNR value for 
different signal compositions: a) 3 sinusoidal and 7 noise signals, b) 
3 sinusoidal and 97 noise signals,  
 
Our next experiments were aimed at the discovering 
how sensitive the whitening method is at different 
number of noise components n (the dimension of the 
noise space). Fig. 5 presents the results for the bias 
removal method applied at 2 different noise space 
dimensions at normal distribution of noise. Fig. 5a 
corresponds to 3-dimensional “signal space” and 7-
dimensional “noise space”, while in Fig. 5b the noise 
dimension has been changed to 97. In both cases the 
results are similar, which means that the method is 
rather insensitive to the number of noise components 
corrupting the measurements. The whitening quality 
depends only on the SNR ratio and its value did not 
exceed 1.8.  
 

a) 

 

b) 

 
Fig. 6 The dependence of error of whitening on the SNR value for 
different type of signals: a) 4 independent speech and 96 noise 
signals, b) 20 dependent speech and 80 noise signals  

 
The important variation is observed when we change 
the signals into dependent. Fig. 6a and b present the 
results for two kinds of signals. Fig. 6a corresponds to 
4 independent and Fig. 6b – to 20 dependent speech 
signals, all corrupted with white noise. The dimension 
of signal and noise space was in both cases the same 
and equal 100. It is evident that lack of independence 
of signals significantly deteriorates the performance of 
the algorithm. The error has been doubled. 

VI. CONCLUSIONS 
The paper has presented and compared different 
methods of prewhitening of the measured signals. 
They have been based either on eigenvalue 
decomposition or on Gram-Schmidt orthogonalization 
procedure. The numerical experiments performed on 
different sets of either synthetic or real life signals 
have confirmed that the most robust is the method 
with bias removal. Its superiority is evident in almost 
whole region of applied noise variance. The important 
factor implicating the performance of the algorithm is 
the independency of the signals. Any dependency 
among signals deteriorates the results of whitening. 
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