VI International Workshop “Computational Problems of Electrical Engineering”

Zakopane 2004

Power Emitted Inside a Conducting Cylinder
Placed in Longitudinal Uniform Magnetic Field
of a Character an Attenuated Sinusoid

Zygmunt Piatek, Bernard Baron, Marian Pasko, Borys Borowik

Abstract —In the paper we determine transient
electromagnetic field in a conducting cylinder placed in
external magnetic field having the character of an
attenuated sinusoid through the solution of Bessel
equation in cylindrical co-ordinates using Laplace
integral transformation. Then, we use Poynting theorem
to determine the superficial density of the instantaneous
power flux diffused into the cylindrical charge and the
volume density of the instantaneous power converted
into heat inside this charge.

1. INTRODUCTION

Magnetic field of a character of an attenuated
sinusoid is used in metal forming and consists of
applying energy of impulse magnetic field to the
process. The impulse of the field is obtained due to the
flow of impulse current, generated by a high-current
impulse generator, through an operating head (a
solenoid or flat bobbin) [1, 2]. In the conducting
cylinder forming the impulse magnetic field is external
in relation to the cylinder and has one component
along the Oz axis (Fig.1) and it is determined by the
following formula

H*"()=1.H"(1), (1

where the component of the magnetic field strength
along the Oz axis

szeW(t) — H() e—ﬂt Sll’l(wr+éj) 1(1) 5 (1a)

H,
attenuation in A'‘m™ is non-existent, - pulsation of
proper oscillation of the system element being formed-

operating head- capacitor bank in rad-s™, # - magnetic
field attenuation coefficient in s, ¢ initial phase of

where: - magnetic field amplitude when,
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the magnetic field strength in rad, 1(¢) - Headviside
unit step.

Typical average values of the above quantities
appearing in the impulse magnetic field metal forming

are: £=0, H,=10"A-m", 7=5-10s",

@=r-10"rad-s™".

In the impulse magnetic field metal forming besides
the basic problem consisting of determining the space-
time distribution of the pressure in the element being
formed (having previously determined the volume
density of electrodynamic forces) it is also important
to determine the power emitted inside the metal. We
will deal with this question after the determination of

the space-time distribution of current density J(7,7)

and of the magnetic field strength H ' (7,7) in the
element being formed, i.e. of the electromagnetic field.

zA

v-=

Fig. 1 Conducting cylinder in external longitudinal uniform
magnetic field of a character of an attenuated sinusoid

II. ELECTROMAGNETIC FIELD

In the case of an infinitely long conducting cylinder
placed in external longitudinal magnetic field (Fig.1)
the values describing the electromagnetic field as for
the symmetry of the system depend only on the » co-
ordinate of the cylindrical co-ordinate system. Then,
we deal here with a one-dimensional question with a
constant magnetic permittivity of the cylinder
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M = M, and its constant conductivity y . As the field

H ““"(¢) has got only one component along the Oz

axis, form the second Maxwell equation
ow aH zew t
rotE " (r,t) z—ﬂa—(), the electric field
t

strength has also got one component along the axis @
, e E(rt)=-14EZ" (r,t). So we have to

deal with a question of the cylindrical wave cast on the
lateral surface of the conducting cylinder.

In the genral case of a conductor of a chosen kind
placed in alternating electromagnetic field some
currents are bound to appear, as the total electric field
cannot equal zero everywhere in the whole conductor.
Those currents are called Foucault currents [5 ,6] and

are determined by the current density vector J(7,¢)-
Fig.1. These currents generate the so-called return
interaction magnetic field H *(7,¢), which, in the
system we are considering, has got one component
along the z axis, thus H”(r,t)=1_H” (r,t). In
papers [5, 6, 7, 8] it has been shown that this field
equals zero. The zero value of the return interaction
magnetic field in » > R, area results form the fact

that the lines of the density of current J(#) induced

in the tubular charge are concentric circles of Oz
axis— Fig.1. Then they do not generate any magnetic
field outside the tube, as it is also the case with the
current in the infinitely long solenoid. Then the total
magnetic field in the considered area

HY(=1H(@)=1H"()=1Im{H" (1)}, (2)

where
H"(t)=H,e" e (1), ()

where the complex amplitude of the external magnetic
field

H,=H,e". (2b)

The required magnetic field strength H ! (7,) in
the area of [ (0<r<R) is written as
H!(r,t) =Im{H(r,t)}, where H'(r,t) is the
complex magnetic field function of real variables r

and ¢ . This function fulfils the scalar wave equation
in cylindrical co-ordinates

O*H (r,t)y 10H.(rt oH' (r,t
H.( )+_ H_( )_W H_(r,t)

=0. 3)
or’ roor ot
For r=R ithas to be the case of the continuity of
the magnetic field strength, i.e. we have the following
boundary condition for the complex values:

H!(R,t)=H (). (3a)

Moreover we assume a zero initial condition, i.e. for

t=0

H.(r,0)=0. (3b)

We solve equation (3) with the boundary condition
(3a) applying Laplace integral transform. In order to

—1
do this let us denote by H-(r,s) the Laplace

: I . :
transform complex function A, (R,?) in relation to

variable ¢ , and then we perform the Laplace
transformation of the following terms of the
differential equation (3), taking into account the zero

initial condition H i (7,0) = 0. Thus, we obtain the
following equation [5, 6, 8]:

8 H-(r,s) Ll OH-(r,s)

—I
e suy H(r.5)=0 (4

with the boundary condition

HE(Rys)=Hy——
s,

(4)

where

Sy =—N+]@. (4b)

Equation (4) is the Bessel equation of zero order of
variable , whose solution is the function [5, 6, 7, 8]

— 1,(Js\Juyr)

H.(r,s)=H, , (5)
(s —50) I,(VsJuy R)

where 1 (\/EW/,UV’”) is the modified Bessela

function of the complex variable \/E A 1y r  of first

kind and zero order.

The function zeros of the
denominator in formula (5) are s =5, and

2
Xk
s=s,=—0, =——5<0, (5
k k ,U7R2 (5a)
where
o mg gl 124 120008 0
L 8p 3Bp)T 1588p)°
where
o, =(k—%)7z, (k=1,2,3,.). (5
Then to calculate the original H i (r,t) of the

—I
operational function H :(7,$) we use the distribution
theorem, obtaining [5, 6, 7, §]

k=1

H(r,t)= [ﬂi,o (r,t) + iﬁi,k (r, z)} 1(1). (6)

where H :,0 (7,t) is the original of function (5) in

the pole s =5, (k=0), while H_,(r,) is the
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original of this function in the pole s =5, (k=1, 2,

3,...). These originals are given by the following
formulas:

IO(]_—'r) e—m ejm

H' (r.0)=H . (6
= z,0 (7" ) (] IO(L R) ( a)
and
r
I(=x)
H (rt)=H, R expl-2_1],  (6b)
e - Ak(xk)ll(_.]xk) /17R2

where [, (—]x,) isthe modified Bessel function of

first kind and first order.
The complex propagation constant

L=\(-nuy+jouy=re’,

whose module

F=\/w,u;/1/1+(1)2 =Kk (7a)
w
and the argument
—larct (—g)—£+larct 1 (7b)
® > g 7 45 g .
where
K=2 1+ Ly (7c)
a
and the coefficient
k= ZEL (7d)

whose inverse is the depth of the diffusion of the wave
inside the well conducting medium and it is

2
= |——. (7e)

5=1
k wpHy

N

The complex propagation constant can also be
written as

L=k 2G-D=xk.
w
where
k=[2(G-D=xe”. (@
w
Then the complex constant
y 1 2p2 - 2p2 11 2vq_
A (x)=——[2k"R" +j(2k"R"—-x;)]=
2x, w , (8

= 4, (x,) exp[ja, (x,)]

110

where its module

A (x,)= i\/ QERY + 2R L 32 ()
2x, @
and its argument

2p2 717 2

2k°R ;—xk

a,(x,)=arctg (8b)
e 2k’R?

The exponential form of the Bessel function

appearing in formulas (6a) and (6b)

I, (Lr)=M,(Lr)explj B,(L7)],

1, (L R) =M (L R) explj B, (L R)], ©

7

r

. r . r . .
INGEN E) =M,, () x, E) expl] ﬂo,k ()X,
Ii(x,) = Ml,k (-3 x, ) explj ﬂl,k (- x)]

lets us to write the functions (6a) and (6b) in real

forms, i.e. as real functions of variable r of the
cylindrical co-ordinate system and of time ¢ . We
obtain respectively
M, [r
Hl(r,)=H, o{L7) e’
’ M,(I'R) , (10

-sin[@ ¢+ f,(L )= By (L R) +¢]
and

My, 7) .
——exp[——1]-
A4, () M, (-Jx,) Uy R (10a)

-sit 4, (%, fe)—/z,kcjxk)—ak(xk)m

[—Izl,k(rat) :HO

Finally the magnetic field strength in a conducting
cylinder placed in external longitudinal magnetic field
of a character of an attenuated sinusoid has the
following form

Hl(r,t)= {H L)+ iH L, 1)} 1(£). (10b)

k=1

It is convenient to perform the analysis of the
electromagnetic field in relative units. That is why we
introduce the variable x corresponding to the variable
r of the cylindrical co-ordinate system, as

x=—, 0<x<1. (11)

The frequency of the sinusoidal external magnetic
field and the conductivity of the charge with regard to
its external radius are taken into account through the

R
a=—=kR. have:
o

coefficient Thus, we

I'r=kkr=xkax, 'R=kkR=Kka.
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The magnetic field is then described by the
following formulas:

H! (x,t)= {H;’O(x,t) + E H!, (x,t):| 1(1) .(12)
k=1
where

Hlo(x,t) = H, M,(kax) o .

M,(xa)
sin[@ 1+ By (ko x) = By (k a) + ]

» (129

and

M, (-] >
HE, ) = Hy 05Dy 7%
A,(x )M, (jx,) 2a

: Sir{ﬂo,k (-Jxx)— ﬂl,k (Jx) = (%) +S]

1
(12b)

In the conducting cylinder the complex magnetic
field strength  H ' (r,7) = 1 ﬂi (7,t) is connected
with the complex current density
J(r,t) =1y J o (7,t) by the first Maxwell equation

rot ﬂ[ (r,t)=J(r,t), from which, taking into

account the fact that the above vectors have got only
one component, we obtain

Jo(x,1) = |:JG),0 (x,7) + i‘]@,k (x:t)} 1(#), (13)

k=1

where

M
Joo(x,t)=—H, Mfe’”’ .

M,(k )
sin[@ ¢+ fi (K a x) = By(ka)+ ¢ +§]

(13a)

M, (kax) and S, (k o x) are

respectively the module and the argument of the
modified Bessel function of first kind and first order

I (ko x) ZMI(E(Zx)ejﬁl(gax) and

where

ME}C exp[.zallzt
ACOMGx) a 20
-CoBf8, (1% — B, (Ix) — . (3, ) +E]

JQk(xat)=[_[() ]

(13b)

III. SUPERFICIAL DENSITY OF THE INSTANTANEOUS
POWER FLUX

According to the Poynting theorem [3, 9] the
superficial density of the instantaneous power flux is
defined by the following formula:

P(x,1) =lJ(x,t)>< H'(x,0)=P.(x,0)(-1,). (14)
Y

Substitution of (15) and (16) into this formula yields

R,(X, t) = _l |:J®,O ()C,t) + i‘](%),l (xa t):|
v =1

, (14a)
1 1
|:Hz,0 (‘x9 t) + z Hz,k ('x9 t):| 1(t)
k=1
where the fixed component and the transient
component of the current density are given

respectively by the formulas (13a) and (13b), while
for the magnetic field by the formulas (12a) and (12b).

The influence of the parameter « on the distribution
of the superficial density of the power flux inside the
circular charge is shown in Fig. 2 at ¢ = T/4, i.e. for
the instantaneous value of the external magnetic field
equal to its amplitude. This graph has been worked out
for relative values, that is to say in relation to the
value of the power flux on the surface of the
cylindrical ~ charge, 1ie. as the coefficient
_ P(xt=T/4)

P(x=1t=T/4)

Fig.2. Diffusion and attenuation of the superficial density of the
power flux inside a circular charge placed in external uniform

1

0 L . L T L L
05 08 0B 065 07 075 08 08 09 095 1
X

magnetic field of a character of an attenuated sinusoid at = 7/4, w
=m10*rad-s’, n=510°s", y=5810° Sm"', & =0: 1-a=3,
2—a=6,3-0=12

The time-space distribution is shown in Fig.3. This
graph has been worked out for relative values, that is

HT
4

to say in relation to , 1.e. as the coefficient

Y
H?

0

P =

P (x,t)-
F,( )
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1[s]

Fig.3. Time-space distribution of the power flux inside a circular
charge placed in external uniform magnetic field of a character of an
attenuated sinusoid; a =5 , w =m10*rad-s™, y =510°s,, & =0,
y=5810° S'm’

The determined superficial density of the power flux
inside the cylindrical charge allows us to determine the

energy supplied to the charge in the time interval of
<0, t, >. It is determined from the instantaneous

power per unit length of the conductor, diffused
through its lateral surface.

p()=27RP (x=1,0)1() =

- D= - (15)
z;zky{ 0.0 (X = 1t)+ZJ J(x= 1z)}
{ O(x_lt)+ZH k(x—lt)}l(t)

integration of this power in relation to the time from
0 to £,

W= j p(t)dt . (16)
0

IV. VOLUME DENSITY OF THE INSTANTANEOUS POWER

In order to determine the temperature distribution
inside the charge one has to define the so called
external heat sources, which are defined by the volume
density of the power converted into heat. According to
Poynting theorem the instantaneous volume density of

the power converted into heat in area V" in [ W - m"3]

Py (nO.20) =L T2 (16,20 (1)
V4

and then the instantaneous power in [W]

P =[P.:0,2,1) ar=" [7eezndr. as)
v Yy

In the case of the current density depending only on
variable r of cylindrical co-ordinate system, i.e. for

J =Jg(7,t) this power is given by the formula:

112

1 1 27R
pcal(t —IIJJé(V,Z)rdrd@&z
7900
(19)
2
= Llng,(r,z) rdr
0
Substitution of the variable

x:% —>r=xR — dr=Rdx, where0<x<1

yields respectively the instantaneous volume density
of the power

(20)

Pea(X,1) = _J o (X,1)
4

as well as the instantaneous power converted into heat
in area V'

2 1
P =[ Py =2 [ 2wt =
- 2Vl (21
=ﬂ—2aIJé(x,t)xdx
0

The time-space distribution of the volume density of
the loses of calorific power is shown in Fig. 4. The
graph is worked out for relative values, i.e. in relation

272

to H, k , le. 1n the form of function
e

pS('x’t)_H k2 pcal(‘x Z‘)

1[s]

Fig.4. Time-space distribution of the volume density of heat loses
inside a cylindrical charge placed in external uniform magnetic field
of a character of an attenuated sinusoid j; a =5, w =n-10*rads”,
n=510°s", y=5810° Sm”, £=0

The curve of the instantaneous power converted into
heat inside a cylindrical charge is shown in Fig..5. The
graph is worked out for relative values, that is to say in

N2rmla H:
Y

relation to , 1.e. in the form of function

2 Pea(®) -

P ()= \/—
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Fig.5. Curve of the instantaneous power converted into heat inside a
cylindrical charge placed in external uniform magnetic field of a
character of an attenuated sinusoid; a=5,0=mnl0"rads”,
7n=510°s", y=5810° Sm’, & =0
Energy converted into heat  during the time

0 <t <t, is given by the formula

W,y = pa(®)dt. (22)
0

n=5-10°s" and
@ =7m-10"rad-s” which means that the relation

H*(t = §+ 57)

For the practical purposes

does not surpass 1%. In order to
T
er\4r ==
Se=

determine the energy converted into heat inside a
cylindrical charge we can then (see also Fig. 5) quite
t,=5T.

acurately assume the time

V. CONCLUSION
For the case of the fixed sinusoidal electromagnetic
field (7 =0) in the electric and magnetic field the

transient components disappear, i.e. the magnetic field
is given by the formula

M, (x ax)
H'(x,t)=H' (x,))1(t)=H, ———"".
z('x ) z,O(‘x ) () 0 MO(Ea) ’ (23)
sinf@ 1+ fy (k a x) = fy (5 &) + S11(7)
while the current density
M, (x ax)
Jo(x,0)=J D1t =—H,———~T.
o(X%,0) @,o(x )1(2) 0 M, (k@) 4)

sint+ (@)~ fy (k @) + 9+ E110)
in which E:\/TJ s, I'=\Jouy :\/Ek and q):g.

Then the superficial density of the instantaneous
power is given by the formula

P = —; 00 (50 H!  (x,0)1(0) =

:\/HIﬁMO(J?jax)M,(JTjax) .
y 2 M;(2j@)

cosLy (2] e )~ fy(f2j ey + 1

d—cosRa 1+ f,(\2j ax)+

+A2ian) -2 (2] )+ +24]

+(25)

1)

Instantaneous power per unit length of the circular
charge diffused through its lateral surface

p()=27RP(x=11)=

26
— 228 a=LoH =101 0
y

Then the active power

f H? M,(y2]
P:;Ip(t)dt:bzR |ZH T (2
0

y 2 My(2ja) |7

cosl (2 )= A2 @) +7]

which is, after the suitable modifications, the
equivalent of the solution obtained by M. Krakowski
in [3] — formula (9.111), p. 200.

The determined -electromagnetic field and the
superficial and volume density of the power can be
used to define the substitute parameters of the system
working head-charge during the process of metal
forming with impulse magnetic field. The results
presented here, describing the volume density of the
power converted into heat inside a cylindrical charge
determine the so-called external heat sources and can
be used to describe the temperature field in the charge
being formed both in transient and fixed states of the
electromagnetic field.
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