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 Abstract —In the paper we determine transient 
electromagnetic field in a conducting cylinder placed in 
external magnetic field having the character of an 
attenuated sinusoid through the solution of Bessel 
equation in cylindrical co-ordinates using Laplace 
integral transformation. Then, we use Poynting theorem 
to determine the superficial density of the instantaneous 
power flux diffused into the cylindrical charge and the 
volume density of the instantaneous power converted 
into heat inside this charge. 

I. INTRODUCTION 
agnetic field of a character of an attenuated 
sinusoid is used in metal forming and consists of 

applying energy of impulse magnetic field to the 
process. The impulse of the field is obtained due to the 
flow of impulse current, generated by a high-current 
impulse generator, through an operating head (a 
solenoid or flat bobbin) [1, 2]. In the conducting 
cylinder forming the impulse magnetic field is external 
in relation to the cylinder and has one component 
along the  Oz axis (Fig.1) and it is determined by the 
following formula  
 
 )()( tHt zew

zz1=zewH , (1) 
 
where the component of the magnetic field strength 
along the Oz axis   

       
)( ) sin( e )(  

0 ttHtH tzew
z 1ξϖη += − , (1a) 

 
where: 0H  - magnetic field amplitude when, 
attenuation in A·m-1  is non-existent, ω - pulsation of 
proper oscillation of the system element being formed-
operating head- capacitor bank in  rad·s-1 , η - magnetic 
field attenuation coefficient in  s-1 ,  ξ    initial phase of 
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the magnetic field strength in rad,  )(t1  - Headviside 
unit step. 

Typical average values of the above quantities 
appearing in the impulse magnetic field metal forming 
are: 0=ξ ,   -13-17

0 s105     ,mA10 ⋅=⋅= ηH , 
-14 srad10 ⋅⋅= πϖ . 

In the impulse magnetic field metal forming besides 
the basic problem consisting of determining the space-
time distribution of the pressure in the element being 
formed (having previously determined the volume 
density of electrodynamic forces) it is also important 
to determine the power emitted inside the metal.  We 
will deal with this question after the determination of 
the space-time distribution of current density  ),( trJ   

and of the magnetic field strength  ),( trIH   in the 
element being formed, i.e. of the electromagnetic field. 

 

R

I

II

z

y

x

θ r
1z

1r

1θ

HII(r,t)

HI(r,t)

EI(r,t)
z

J(r,t)

Hzew(t)

 
 

Fig. 1 Conducting cylinder in external longitudinal uniform 
magnetic field of a character of an attenuated sinusoid 

II. ELECTROMAGNETIC FIELD  
In the case of an infinitely long conducting cylinder 

placed in external longitudinal magnetic field (Fig.1) 
the values describing the electromagnetic field as for 
the symmetry of the system depend only on the  r  co-
ordinate of the cylindrical co-ordinate system. Then, 
we deal here with a one-dimensional question with a 
constant magnetic permittivity of the cylinder 
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0µµ =   and its constant conductivity  γ . As the field  

)(tzewH  has got only one component  along the  Oz 
axis, form the second Maxwell equation  

t
ttr

zew
zew

∂
∂

−=
)(),( HE µrot ,  the electric field 

strength has also got one component along the axis  Θ 
, i.e. ),(),( trEtr zewzew

ΘΘ−= 1E . So we have to 
deal with a question of the cylindrical wave cast on the 
lateral surface of the conducting cylinder. 

In the genral case of a conductor of a chosen kind 
placed in alternating electromagnetic field  some  
currents are bound to appear, as the total electric field 
cannot equal zero everywhere in the whole conductor. 
Those currents are called Foucault  currents [5 ,6] and 
are determined by the current density vector  ),( trJ - 
Fig.1. These currents generate the so-called return 
interaction magnetic field  ),( trozH , which, in the 
system we are considering, has got one component 
along the  z axis, thus  ),(),( trHtr oz

zz
oz 1=H . In 

papers  [5, 6, 7, 8] it has been shown that this field 
equals zero. The zero value of the return interaction 
magnetic field in 2Rr >   area results form the fact 

that the lines of the density of current  )(rJ   induced 
in the tubular charge are concentric circles of  Oz 
axis– Fig.1. Then they do not generate any magnetic 
field outside the tube, as it is also the case with the 
current in the infinitely long solenoid. Then the total 
magnetic field in the considered area  

 
)}({Im)()()( tHtHtHt zew

zz
zew
zz

II
zz

II 111 ===H , (2) 
 

where 
 )( e e )(  j 

0 tHtH tt-zew
z 1ϖη= ,  (2a) 

 
where the complex amplitude of the external magnetic 
field  
 .e j

00
ξHH =  (2b) 

 
The required magnetic field strength  ),( trH I

z  in 
the area of  I   ( Rr ≤≤0 ) is written as  

)},,({Im),( trHtrH I
z

I
z =  where  ),( trH I

z  is the 
complex magnetic field function of real variables  r  
and  t . This function fulfils the scalar wave equation 
in cylindrical co-ordinates 
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I
z γµ . (3) 

 
For   r = R   it has to be the case of  the continuity of 

the magnetic field strength, i.e. we have the following 
boundary condition for the complex values: 

 
 )(),( zew

z tHtRH I
z = .  (3a) 

Moreover we assume a zero initial condition, i.e. for    
0=t  

 0)0,( =rH I
z .  (3b) 

 
We solve equation  (3) with the boundary condition 

(3a) applying Laplace integral transform. In order to 

do this let us denote by  ),( srH
I
z  the Laplace 

transform  complex function ),( tRH I
z   in relation to 

variable  t , and then we perform the Laplace 
transformation of the following terms of the 
differential equation (3), taking into account  the zero 
initial condition  0)0,( =rH I

z . Thus, we obtain the 
following equation [5, 6, 8]: 
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I
z
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z γµ  (4) 

 
with the boundary condition  

 
0

0
1),(

ss
HsRH

I
z

−
= , (4a) 

where 
 ϖη  j0 +−=s . (4b) 

 
Equation (4)  is the Bessel equation of zero order of 

variable r, whose solution is the function  [5, 6, 7, 8] 
      

)( )(
)(

),(
00

0
0 RsIss

rsI
HsrH

I
z

µγ
µγ

−
= , (5) 

where )(0 rsI µγ  is the modified  Bessela 

function of the complex variable  rs µγ   of first 
kind and zero order. The function zeros of the 
denominator in formula (5) are 0ss =  and 

 0
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2

<−=−==
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x
ss k

kk γµ
σ , (5a) 

where 

...
)8(158

120928
)8(3

124
8

1
53 −+−+≅

kkk
kkx

ϕϕϕ
ϕ  , (5b) 

where 

   . 3,...) 2, ,1(     , )
4
1( =−= kkk πϕ  (5c) 

Then to calculate the original   ),( trH I
z   of the 

operational function ),( srH
I
z   we use the distribution 

theorem, obtaining [5, 6, 7, 8] 
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where  ),(0, trH I
z  is the original of function (5) in 

the pole 0ss =  ( k = 0 ), while   ),(, trH I
kz  is the  
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original of this function in the pole kss =  ( k = 1, 2, 
3,... ). These originals are given by the following 
formulas: 

          ttI
z RΓI

rΓI
HtrH ϖη j

0

0
00, e e 

) (
) (

),( −= , (6a) 

and 
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R
rxI
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kkk

k
I
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−
= , (6b) 

 
where  ) j(1 kxI −   is the modified  Bessel function of 
first kind and first order. 

The complex propagation constant  
 

           ϕγµϖγµη   je    j  ΓΓ =+−= , (7) 
 
whose module 
 

             kΓ  )(1  2 κ
ω
ηγϖµ =+=  (7a) 

and the argument  
 

ϖ
η

η
ϖϕ  tgarc

2
1

4
π) tg(-arc

2
1

+== , (7b) 

where 

 2)(1  2
ω
ηκ +=  (7c) 

and the coefficient 

 
2

  γµϖ
=k , (7d) 

whose inverse is the depth of the diffusion of the wave 
inside the well conducting medium and it is  
 

 
γµϖ

δ
  

21
==

k
. (7e) 

 
The complex propagation constant can also be 

written as  

 kkΓ   )j( 2 κ
ϖ
η

=−= , (7f) 

where 

 ϕκ
ϖ
ηκ  je )j( 2 =−= . (7f) 

 
Then the complex constant  
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where its module 
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and its argument 
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The exponential form of the  Bessel function 

appearing in formulas (6a) and (6b)  
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lets us to write the functions (6a) and (6b) in real 
forms, i.e. as real functions of variable  r  of the 
cylindrical co-ordinate system and of time  t . We 
obtain respectively 
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Finally the magnetic field strength in a conducting 

cylinder placed in external longitudinal magnetic field 
of a character of an attenuated sinusoid has the 
following form 
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I
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. (10b) 

 
It is convenient  to perform the analysis of the 

electromagnetic field  in relative units. That is why we 
introduce the variable x  corresponding to the variable  
r  of the cylindrical co-ordinate system, as 

 10       , ≤≤= x
R
rx . (11) 

The frequency of the sinusoidal external magnetic 
field and the conductivity of the charge with regard to 
its external radius are taken into account through the 

coefficient RkR  ==
δ

α . Thus, we have: 

xrkrΓ      ακκ == ,    ακκ     == RkRΓ . 
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The magnetic field is then described by the 
following formulas: 

)( ),(),(),(
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where 
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In the conducting cylinder  the complex magnetic 

field strength   ),( ),( trHtr I
zz

I 1=H  is connected 
with the complex current density   

),( ),( trJtr ΘΘ= 1J  by the first Maxwell equation  

),( ),(  trtrI JH =rot , from which, taking into 
account the fact that the above vectors have got only 
one component, we obtain 
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where  )  (   and   )  ( 11 xxM ακβακ   are 
respectively the module and the argument of the 
modified Bessel function of first kind and first order  
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III. SUPERFICIAL DENSITY OF THE INSTANTANEOUS 
POWER FLUX 

According to the Poynting theorem [3, 9] the 
superficial density of the instantaneous power flux is 
defined by the  following formula: 
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I txPtxtxtx 1−=×= HJP

γ
. (14) 

Substitution of (15) and (16) into this formula yields 
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where the fixed component and the transient 
component of the current density are given 
respectively by the formulas (13a) and (13b),  while 
for the magnetic field by the formulas (12a) and (12b). 

The influence of the parameter α on the distribution 
of the superficial density of the power flux inside the 
circular charge is shown in Fig. 2 at   t = T/4, i.e. for 
the instantaneous value of the external magnetic field 
equal to its amplitude. This graph has been worked out 
for relative values, that is to say  in relation to the 
value of the power flux on the surface of the 
cylindrical charge, i.e. as the coefficient 

)4/,1(
)4/,(

1 TtxP
TtxP

P
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= . 

Fig.2. Diffusion and attenuation of the superficial density of the 
power flux inside a circular charge placed in external uniform 

magnetic field of a character of an attenuated sinusoid at  t = T/4,  ω 
= π·104 rad·s-1, η = 5·103 s-1,    γ = 58·106  S·m-1,  ξ  = 0:   1 – α = 3,   
2 – α = 6,  3 – α = 12   
 

The time-space distribution is shown in Fig.3. This 
graph has been worked out for relative values, that is 

to say  in relation to 
γ
ΓH  2

0 , i.e. as the coefficient 
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0
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P r

γ
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Fig.3. Time-space distribution of the power flux inside a circular 
charge placed in external uniform magnetic field of a character of an 
attenuated sinusoid; α = 5  , ω = π·104 rad·s-1, η = 5·103 s-1, ,  ξ  = 0,  
γ = 58·106  S·m-1 

The determined superficial density of the power flux 
inside the cylindrical charge allows us to determine the 
energy supplied to the charge in the time interval of  

>< 0,0 t . It is determined from the instantaneous 
power per unit length of the conductor, diffused 
through its lateral surface. 
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integration of this power in relation to the time from      
0  to  0t  , i.e. 

 ∫=
0

0

)(
t

dttpW . (16) 

IV. VOLUME DENSITY OF THE INSTANTANEOUS POWER 

In order to determine the temperature distribution 
inside the charge one has to define the so called 
external heat sources, which are defined by the volume 
density of the power converted into heat. According to 
Poynting theorem the instantaneous volume density of 
the power converted into heat in area V  in  [ -3mW ⋅ ] 
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In the case of the current density depending only on 

variable  r  of cylindrical co-ordinate system, i.e. for 
),( trJJ Θ=  this power is given by the formula:  
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Substitution of the variable  

10    where,d d          ≤≤=→=→= xxRrRxr
R
rx

yields respectively the instantaneous volume density 
of the power 
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as well as the instantaneous power converted into heat 
in area V  
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The time-space distribution of the volume density of 

the loses of calorific power is shown in Fig.  4. The 
graph is worked out for relative values, i.e. in relation 

to 
γ

22
0  kH , i.e. in the form of function 

),(
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Fig.4. Time-space distribution of the volume density of heat loses 
inside a cylindrical charge placed in external uniform magnetic field 
of a character of an attenuated sinusoid j;     α = 5 , ω = π·104 rad·s-1, 
η = 5·103 s-1,   γ = 58·106  S·m-1,  ξ  = 0 

 
The curve of the instantaneous power converted into 

heat inside a cylindrical charge is shown in Fig..5. The 
graph is worked out for relative values, that is to say in 

relation to 
γ

απ 2
0    2 Hl , i.e. in the form of  function 
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Fig.5. Curve of the instantaneous power converted into heat inside  a 
cylindrical charge placed in external uniform magnetic field of a 
character of an attenuated sinusoid;     α = 5 , ω = π·104 rad·s-1, 
η = 5·103 s-1,   γ = 58·106  S·m-1,  ξ  = 0 

Energy converted into heat  during the time 

00 tt ≤≤  is given by the formula  
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For the practical purposes  -13 s105 ⋅=η   and  
-14 srad10 ⋅⋅= πϖ  which means that the relation  
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 does not surpass 1%. In order to 

determine the energy converted into heat inside a 
cylindrical charge we can then (see also Fig. 5) quite 
acurately assume the time    Tt  50 = . 

V.  CONCLUSION 
For the case of the fixed sinusoidal electromagnetic 
field ( 0=η ) in the electric and magnetic field the 
transient components disappear, i.e. the magnetic field 
is given by the formula  
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in which j 2 =κ  ,  kΓ  2  == γϖµ   and  
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Then the superficial density of the instantaneous 

power is given by the formula 
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Instantaneous power per unit length of the circular 

charge diffused through its lateral surface 
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Then the active power 
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which is, after the suitable modifications, the 
equivalent of the solution obtained by  M. Krakowski 
in [3] – formula (9.111), p. 200. 

The determined electromagnetic field and the 
superficial and volume density of the power can be 
used to define the substitute parameters of the system 
working head-charge during the process of metal 
forming with impulse magnetic field. The results 
presented here, describing the volume density of the 
power converted into heat inside a cylindrical charge 
determine the so-called external heat sources and can 
be used to describe the temperature field in the charge 
being formed both in transient and fixed states of the 
electromagnetic field. 
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