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Abstract–The paper presents a new approach to 
studies of periodic non-harmonic states in linear systems. 
It is completely independent on Fourier series method 
and is aimed on the application of a saw-tooth waveform 
to determining, on the line, the output-input relation in 
linear dynamical systems. Respective schemes for the 
unified representation of composite periodic non-
harmonic waveforms are involved. The proposed method 
is simple and straightforward, the number of 
mathematical operations is minimized, and the structure 
of the load with a given supplying device or vice versa can 
be optimized according to proper desired level of one-
period energy. The newly  established method appears as 
a powerful broadly applicable technique to characterize 
non-harmonic periodic oscillations from a perspective 
different than that obtained by the method resulting 
from the Fourier series.  Conditions leading to loops of 
the one-period energy are formulated and developed. 
Applying this newly recommended method leads to 
relinquishment of classic frequency analysis.  

Index Terms–Periodic non-harmonic waveforms, 
Fourier series-less analysis, linear network, loops of 
one-period energy 

I. INTRODUCTION 
  N RECENT  YEARS,  renewed  attention  has 

      been directed toward the energy flow in dynamical 
systems, a problem which is denoted as one of the 
outstanding unsolved problems of modern 
technologies. In electric power systems the distortion 
of sinusoidal voltages and currents is one of the major 
energy quality concerns. The increased use of power 
electronic devices in the generation, transmission and 
utilisations of systems is accompanied by a 
corresponding growth of harmonic problems in power 
systems [1]. However, preventive measures are costly 
and their minimisation is becoming an important part 
of power system design, relying heavily on theoretical 
prediction. The traditional tools for analysis of 
nonsinusoidal waveforms are the Fourier transform 
and the sampling theorem of Shannon, Whittaker and 
Kotel’nikov [3].  

In a general case of a linear system, under the 
assumption that a periodic steady-state exists, the 
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output distorted waveform f(t) = f(t+T)  has a Fourier 
series representation 
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where ω = T/2π is the fundamental angular 
frequency, and constants F0, Fn and ψn denote the dc 
value, amplitude and phase angle of the nth harmonic 
of the waveform, respectively. It is easily seen that a 
periodic nonharmonic waveform can be expressed as a 
sum of infinite number of cosine components with 
multiple frequencies. For larger systems and 
complicated harmonic producing elements, more 
formal harmonic analysis methods are needed. This 
requires us to find the proper frame in which it is 
possible, in an easy way, to determine the periodic 
non-harmonic response of multivariable linear systems 
[2], [4], [6]. The time domain representation of a 
system by means of the concatenation procedure, as 
opposed to the frequency domain representation by 
means of the system transfer function, became the 
more advantageous approach to the representation of 
system dynamics. 

The aim of this paper is to introduce a new Fourier 
series-less analysis method, based on applications of a 
saw tooth waveform for direct time-domain 
description, which analyzes the linear system voltage 
and current waveforms as much as more effective way 
in respect to the traditional frequency analysis. In 
addition, our new method can avoid the “singularity 
induced infinity” problem, which may happen at 
traditional analysis around singular points. Moreover, 
we present hysteresis loops for one-period energy 
obtained on the energy phase plane when the system is 
subjected to cyclic excitations. Illustration examples 
are emphasized using Matlab mfiles [5].   

II. CARRYING SAW-TOOTH SIGNAL AND 
OTHER USEFUL WAVEFORMS 

Basic waveforms such as the sine, saw-tooth, square 
and triangle still play an important role in today's 
signal processing by power electronic applications. 
These waveforms are referred to as "canonical" 
because of the significant role they play in Fourier 
series-less technique appearing as very effective in 
establishing a new procedure for studies of periodic 
nonharmonic states in linear systems. The square wave 
belongs to a larger class of waveforms called pulse 
waves with essentially two states: on or off. A saw-
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tooth wave s(t) is determined as  
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where T = 2π denotes the period. The direct plot of 
(2) is shown in Fig.1. It will be used in the sequel as a 
carrying periodic waveform because of its linear 
growth during the period and repeated changes at 
regular intervals. In what follows we will use only s 
instead of s(t). 

To show a creative application of this waveform, 
some interesting periodic waveforms will be generated 
using relationships derived from their non-periodic 
time-domain origins. 
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Fig.1. Saw-tooth waveform for T=π 
In the sequel we will take advantages of such useful 

waveform as: 
- relay function r(t,τ) called also jump function 

which can be defined by 
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and its periodic counterpart rT(t,τ) = rT(t+T,τ) 
depending on s, i.e. 

τ)r(s,τ)(t,rT =                                       (4) 
The plot of (4) for T =2π  andτ = is presented in 

Fig.2. 
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Fig.2. Jump waveform rT(t,τ)  for T = 2π  and  τ = π 
Further, in a quite similar manner we can introduce 

waveforms: switch-off function denoted by s-off(t,τ ) 
and determined as follows 
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switch-on function denoted by s-on(t,τ ) and 
defined by 
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By the same way we can define many others 
waveforms which are very useful in analysis of non-
harmonic periodic states of linear systems. It is worth 
to mention that for an adequate choice of the canonical 
waveforms and their arguments we can decompose 
complex signals with respect to s. 

III. DISCONTINUOUS WAVEFORMS AND 
THEIR REPRESENTATIONS 

In practice, the main sources of distortions of 
sinusoidal current and voltage waveforms are power 
electronic devices, which exercise controllability by 
means of multiple switching events within the 
fundamental frequency waveform. Quite obviously, if 
the source waveform is subject to jump changes the 
linear smoothing procedure is not a good choice 
anymore, because all linear networks confuse and 
remove the high frequency components from the 
output waveforms. For this reason, when a source 
waveform with jumps is applied to a linear network it 
causes a typical effect of “edge blurring” [3], [4]. The 
extraneous peaks in the square wave's Fourier series 
never disappear; they occur whenever the waveform is 
discontinuous, and will always be present whenever 
the signal has jumps [6]. We remark that the latter 
situation will be relevant in the present analysis. But 
blowing up the “fine structure” of the singular 
perturbation problem becomes visible and the full 
problem can be analyzed by applying or adapting 
standard methods from dynamical systems theory [8]. 

For the construction of an appropriate algorithm we 
consider a general setting, i.e., waveforms with 
discontinuities. We use the results known in the 
general statement for the special case of the 
concatenation and show that this leads to an elegant 
procedure in Fourier series-less analysis also in the 
situation of real jumps in the input as well as output 
waveforms. 

 
 
Fig.3. A waveform with jumps at t = t1 and  t = t2 
To cope with these effects we will describe 

discontinuous waveforms by using the saw-tooth 
waveform and its relatives such as switch-on and 
switch-of waveforms. Thus the wave- 

form shown in Fig.3 can be represented as  
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where the waveform s-on(t,tk), k =1,  2, is 
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determined by (6). 
This intuitively appealing “switching rule” can be 

exploited in several ways. Using the switching 
approach (7) suggests the incorporation of a true 
smoothing element into the competition. For instance, 
in the case of the signal shown in Fig.2 the period 
equals T = 2π, and the discontinuity appears at t1 = π.  
Prior to discontinuity the signal takes constant value 
equal to -1 and post discontinuity it equals 1.  Thus 
applying (7) yields 
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These calculations demonstrate how the signal 
jumps can be taken into account to a governing 
equation of a given linear system under periodic 
nonharmonic regime. The existence of solutions to 
such problems is discussed by making use the 
continuity and periodicity properties of appropriate 
waveforms in a given network. The idea is to find 
suitable expressions for the output waveforms in terms 
of steady state and transient components of solutions 
of differential equations describing instantaneous state 
of the network during particular intervals over one 
period of the bounded forcing term. Details in this 
direction we shall present in the next section. 

IV.  SOLUTIONS OF GOVERNING EQUATIONS 
FOR PERIODIC NON-HARMONIC STATES 

Conditions associated with the analysis of complex 
waveforms including periodicity and continuity will 
be involved in this Section. In order to present a 
general algorithm let us consider steady state 
oscillations in the network shown in Fig.4. It 
corresponds to a single-phase bridge voltage source 
inverter (VSI) supplying an RLC load [7].  

 
 
 
Fig.4. A network with a voltage source inverter VSI 
 
 
 
The mathematical model of such a configuration 

takes the form 
)()(4)(2)( tutztztz =++ &&&                    (9) 

where the forcing term u(t) = 0.8 r(t)  is presented 
in Fig.5. The amplitude of this waveform was scaled 
by 50%.   

-10 -5 0 5 10 15 20
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time[s]

z(
t),

 0
.5

*u
(t)

, i
(t)

Forcing term 0.5*u(t),in reduced scale, and output waveforms z(t) and i(t)

z(t)   
0.5u(t)
i(t)   

 
Fig. 5. The input and output waveforms 
In this case the self-frequencies of the network are 

as follows 

 31,311 jp          jp 2 −−=+−=           (10) 
The steady-state solutions for the periodic output 

waveform in successive semi-periods of the input 
wave take the forms 

- for 0 ≤ t ≤ π  

)]3sin()3cos([2.0)( 111 tHtGetz t ++= −     (11) 
- for  π ≤ t ≤  2π 
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where the integration constants G1, H1, G2 and H2 
are to be determined from the respective conditions for 
the periodicity and analytical continuity of the total 
solution z(t).  

   Taking into account the periodicity and analytical 
continuity of the output waveform gives 

) (2πz(0)z  ), (2πz(0)z 2121 && ==  
 and  

) (πz) (πz  ), (πz) (πz 2121 && ==  
Solving the above equalities with respect to the 

integration constants yields 
G1 = -0.3953,     G2 = 9.9876,  H1 = -0.2117,   H2 = 

-3.6316 
Substituting these values into (11) and (12) and 

mapping the solution of (9) into the s domain gives 
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(13)  
Fig.5 represents the forcing waveform u(t), in twice 

reduced scale, and the output waveforms of the 
capacitive voltage z(t) and load current i(t). It is worth 
pointing out that the shapes of three plots shown in 
Fig. 5 differ importantly one to other but the period of 
the output waveforms is the same as that of the input 
waveform. Essentially, the peaks and troughs of the 
output current i(t)correspond to maximum and 
minimum slopes in time of the output voltage u(t), 
respectively. Note also that at t = 2T  the current in 

R L

CE e(t) 
  VSI 

R = 2Ω, L = 1H, C = 0.25F, E = 0.2V, 
e(t)=0.2r(t)V. 
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the load is negative and it may be possible to rely on 
load commutations of inverter thyristors. This problem 
is beyond the scope of the present paper. 

V. HYSTERESIS LOOPS OF ONE-PERIOD 
ENERGY 

In many physical applications of periodic 
waveforms the interest lies in interpretable basis 
representations for the generated or consumed energy 
during an interval of the activity of an energy source 
or a load, respectively. As is well known, all up-to-
date used methods for energy determination of a 
system element working in a periodic non-harmonic 
steady state have many insufficiencies which vary 
from one case to other and importantly depend on the 
assumed interpretation of particular components of the 
apparent power defined in the complex number 
domain [2], [4], [7]. To avoid this problem we 
consider a much more general setting, i.e., hysteresis 
loops of one-period energy on an energy phase plane. 

We present hysteresis loops in electric charge-
voltage or, equivalently, magnetic flux-current curves 
obtained from numerical simulations of the steady 
state energy when the system is subjected to periodic 
excitations. We use the results known in a general 
setting for special cases of the system elements and 
show that this leads to an elegant algorithm in Fourier 
series-less analysis also in the case of real periodic 
nonharmonic waveforms. 

The steady state energy W(∆t) delivered by the 
source v(t) to its load during a time interval ∆t = nT, 
where n >>0 denotes a positive integer, is expressed 
by 

TnWtW =∆ )(                           (14)  
where WT denotes the energy delivered to the load 

during one period of the input and output waveforms. 
Thus in the periodic non-harmonic state it is sufficient 
to evaluate WT  and then multiplying it by n yields the 
energy delivered or consumed by a network element 
during the given time interval ∆t . 

The derivation of the corresponding expression for 
WT  gives  
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where  
∫ ∫=Ψ= u(t)dt(t)dttitq    and         )()(         (16) 

denote the electric charge and magnetic flux, 
respectively. 

    It follows from expression (15) that the area 
enclosed by a loop on the energy phase plane with 
coordinates (q(t), v(t)) or, equivalently, (ψ(t),i(t)) 
determines the one-period energy WT delivered to, or 
consumed by, respectively, a one-port network being 
under periodic non-harmonic conditions.  

For the network shown in Fig. 4 the one-period 

energy WT delivered by the source to its load  results of 
calculations presented in the previous Section.  If we 
take the input voltage e(t) as one coordinate of the 
energy phase plane then  the choice of the electric 
charge ∫ == )()()( tCzdttitq  as the second 
coordinate of the energy phase plane is implied. With 
these coordinates we can draw the loop of the one-
period energy WT of the source supplying the RLC 
load. It is presented in Fig.6. The important point to 
note here is the exceptional form of the one-period 
energy loop. A rectangular hysteresis loop is obtained 
after a source voltage reversal between plus and minus 
E.  Its area can be very easy determined and in result 
we have WT ≅ 0.0392 J for C1=0.4 F but WT ≅ 0.0174 
J for C2=0.1 F with all other unchanged parameters. 
Thus, this area varies with capacitance of the load and 
with the frequency f = 1/T of the forcing term. The 
overall shape of the hysteresis loop is in quantitative 
agreement with experimental results, much more so 
than in the model with Fourier series analysis. 

In an another case of analysis when the losses of the 
capacitor are taken into account the corresponding 
loops of one-period energies are shown in Fig.7.  They 
are determined for three values of the capacitance with 
all other parameters unchanged. One of the advantages 
of introducing this facility into the system studies is 
the ability to combine useful properties in the time 
domain of each of the structure elements.  
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Fig.6. Loops of one-period energies of the source in Fig.5 
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Fig.7. Loops of one=period energies when losses are added to the 
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VI. FINAL REMARKS AND CONCLUSIONS 
We have discussed properties of linear dynamical 

systems with dissipation and non-harmonic periodic 
waveforms. A new systematic method of dynamical 
network analysis without use of Fourier series 
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approaches has been presented. It can serve as a 
foundation for the derivation of hysteresis loops for 
the one-period energy of linear network components. 
A common feature of these loops is that all problems 
concerning the non-harmonic periodic states in linear 
electrical networks can be reported to studies of the 
somewhat complementary aspect of shaping the 
energy of the network in the energy phase plane.  
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