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 Abstract — The paper deals with numerical solution of 
electromagnetic-thermo-mechanical transient associated 
with levitation heating of a nonferromagnetic sphere in 
harmonic electromagnetic field. Investigated is the 
period during which the body gets from the starting 
position to the final levitating position in the inductor 
that is, however, influenced by its next heating. The 
problem is solved in quasi-coupled formulation. 
Theoretical considerations are illustrated on an example 
whose results are discussed. 

I.  INTRODUCTION 
LECTRODYNAMIC levitation of solid electri-
cally conductive bodies represents the basis of a 
number of modern technologies. One of them is, 

for example, levitation melting of metals in an inert 
atmosphere. The basic advantage of this technology 
consists in the fact that the processed metal is not 
polluted by various impurities that could (when using 
classic technologies) penetrate into it due to its direct 
contact with the crucible wall. The result is a 
superclean pure metal or alloy, intended mostly for 
various medical, space or other advanced applications. 

The levitating system itself consists of one or more 
mutually connected or separated coils. Its arrangement 
may differ from one case to another (shapes of the 
particular coils can be cylindrical, conical or even 
more sophisticated). In specific applications, the basic 
coils may be placed in transversal magnetic field 
produced by supplementary coils that provides 
stabilizing rotation of the processed workpiece etc.   

Design and optimization of the device and 
evaluation of the complete process require, however, 
mathematical and computer modeling that provides 
sufficient and reliable information about its 
characteristics and overall efficiency.  

The paper deals only with the first part of the 
process - lifting the workpiece (an aluminum sphere) 
to the final position and its heating. This task 
represents a coupled electromagnetic-thermo-
mechanical transient problem that is solved in a quasi-
coupled formulation. 

II. FORMULATION OF THE PROBLEM  
Consider the simplest possible axi-symmetric 

levitating system depicted in Fig. 1 in a cylindrical 
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coordinate system ,r z . The system consists of the 
field coil 1 (that carries harmonic current of amplitude 
I  and frequency f ) and processed body 2 (well 
electrically conductive sphere).   

 
Fig. 1.  The investigated arrangement 

 
At the time 0t =  the inductor 1 is connected to the 

source of harmonic current ( ,I f ) and starts producing 
harmonic magnetic field. This field induces eddy 
currents eddyJ  in the body 2. Interaction between the 
magnetic field and eddy currents induced in the body 
then produces the Lorentz forces that make it move up 
from the starting position S (Fig. 1a) in the direction 
of the arrows. At the same time the body starts to be 
heated by the Joule losses. After the transient taking 
time 1t  the body reaches the end position E where the 
Lorentz forces acting on it are in balance with its 
weight (Fig. 1b).  

The transient itself depends on a lot of parameters 
and its time evolution can be quite a complicated 
function (but mostly with character of slowly damped 
oscillations). 

Growing temperature of the inductor and, 
particularly, processed body affects the physical 
properties of the system, among others electrical 
conductivity of its parts. Its variation influences 
distribution of magnetic field and, consequently, the 
position E. On the other hand, these variations are 
relatively small and in most cases may be neglected. 

It is necessary to determine the dynamic 
characteristic of the device, i.e. the dependence of the 
position of the sphere on time, and describe 
consequent temperature rise. Respected should be both 
influence of geometry of the coil and eventual 
temperature variations as far as they are important. 

III.  MATHEMATICAL MODEL AND ITS SOLUTION 
The mathematical model of the problem generally 

consists of two partial differential equations describing 

E 
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distribution of nonstationary electromagnetic and 
temperature fields in the system and one nonlinear 
ordinary differential equation describing the motion of 
the sphere.  

 

A. Electromagnetic field 
Its definition area of the task (in the axisymmetric 

arrangement) is depicted in Fig. 2. Line ABCD is the 
artificial boundary of the arrangement that represents 
the infinity (position of this boundary follows from 
several preliminary computations that show when the 
field distribution near the inductor 1 depends no 
longer on its distance). The investigated domain 
contains four subregions 1 4, ,Ω ΩK  with different 
physical parameters. 

 
Fig. 2. Definition area of the task  

 
As the system is linear, the electromagnetic field 

distribution may be described by Helmholtz’ equation 
for the phasor of vector potential A . Because the field 
is considered axisymmetric (so that the vector 
potential as well as the densities of both field and eddy 
currents have only one nonzero component in 
tangential direction 0ϕ ), this equation reads [1]   
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where γ  denotes the electrical conductivity (which is 

generally a function of temperature T), 7
0 4 10−µ = π⋅  

H/m is the magnetic permeability of vacuum and ω  
the angular frequency of the field current I . The 
phasor of their density denoted as extJ ϕ  is known (the 
current parameters are supposed to be constant in 
time). 

The conditions along the boundary ABCDA read: 
• AD - antisymmetry, 0,Aϕ =  

• ABCD - a force line along which constAϕ = . The 
condition of continuity of the vector potential at 
points A and D implies that this constant is identi-
cally equal to zero. 

The calculated distribution of the phasor of vector 
potential ( ),A A r zϕ ϕ=  then provides distribution of 

eddy currents eddyJ ϕ , specific Joule’s losses Jw  and 

average specific Lorentz’ forces Lf  acting on the 
heated sphere. These quantities are described by 
relations [2], [3] 

eddy jJ Aϕϕ ωγ= − ⋅ ,                       (2) 
*

eddy eddy
J

J J
w ϕ ϕ

γ

⋅
=                        (3) 

and 
L eddy= ×f J B                         (4) 

where *
eddyJ ϕ  is the complex conjugate to eddyJ ϕ . 

Now it is necessary to analyze the last expression for 
Lf . It can be shown that  
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The total Lorentz’ force LF  acting on the sphere 
has only one component LzF  in the axial direction  

1 1
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where 1V  is the volume of the sphere.  

B. Nonstationary temperature field 
The nonstationary temperature field is calculated 

only in the heated sphere, i.e. in domain 1Ω  bounded 
by semicircle KLMNK. The basic Fourier-Kirchhoff 
equation generally describing its distribution reads [4] 

( ) Jdiv grad gradTT c T w
t

λ ρ ∂⎛ ⎞⋅ = ⋅ + ⋅ −⎜ ⎟∂⎝ ⎠
v     (8) 

where λ  denotes the thermal conductivity, ρ  the 
specific mass of the heated material, c  its specific heat 
and v  its velocity. In fact, velocity v of the sphere has 
only one component v  (in direction z ) so that 

grad TT v
z

∂
⋅ = ⋅

∂
v . 

The boundary conditions are (see Fig. 2): 

• KNM – symmetry: 0,T
r

∂
=

∂
 

• KLM – convection: ( )ext
T T T
z

λ α∂
− ⋅ = −

∂
 

where α  is the convective heat transfer coefficient 
and extT  the known temperature of ambient medium. 
Radiation is not respected in this case even when its 
inclusion does not represent any problem. 

C. Equation of the transient  
Motion of the sphere during the transient is 

described by a nonlinear ordinary differential equation 
based on the balance of all forces acting on it. The 
equation reads  

 a L g dzF F F F= − −                        (9) 
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where aF  is the accelerating force, LzF  the total 
Lorentz force acting on the sphere given by (6), gF  its 

weight and dF  the drag force given by aerodynamic 
resistances. All these quantities depend either on the 
position of the sphere or on its derivatives (velocity v  
and acceleration a ). Particular forces can be described 
as follows: 

 a
d d
d d
v vF m V
t t

ρ= ⋅ = ⋅                      (10) 

where ρ  is the specific mass of the sphere and V  its 
volume, 

 gF V gρ= ⋅                             (11) 
and finally 

  2
d x / 2,F c Svρ= ⋅                              (12) 

S  being the cross-section of the sphere, ρ  density of 
the medium and xc  the aerodynamic coefficient.  
  

IV. ILLUSTRATIVE EXAMPLE 
For the particular arrangement depicted in Figs. 1, 2 

and 3 it is necessary to find  
• Current of amplitude I  and frequency f that 

would ensure 
–   movement of the levitated sphere from the 

starting position S (see Fig. 2) to final 
position E where L gzF F= . 

– its consequent induction heating to average 
temperature A 650 CT = ° , 

 
Input data and computations 

The basic dimensions of the system (see Fig. 3) are: 
• 0R = 0.05 m, 0.1h = m, 1r = 0.04 m, 
• 0.178l = m, 1 0.003s = m, 2 0.002s = m, 
• β = 30, 45 and 60°, respectively. 

The coil is made from a hollow copper (Cu 99) 
conductor (internal diameter 4 mm, external diameter 
8 mm) cooled by water. Its arrangement and 
dimensions are depicted in Fig. 3. The number of its 
turns that are wound in two layers c 36N = . 

The principal physical parameters of Cu 99: 
electrical conductivity 7

Cu 5.7 10γ = ⋅ S/m, r 1µ = . 
Material of the sphere is aluminum Al 99.5 with 

average electrical conductivity 7
Al 1.9 10γ = ⋅ S/m, 

λ = 229 W/mK, 2700ρ = kg/m3, c = 896 J/kgK 
and r 1µ = . The mass of the sphere 1.45560m = kg 
and its weight g 13.87F = N. The average convective 
coefficient of heat transfer 20α = W/m2K and 

ext 20T = °C. Magnetic permeability of electrically 
nonconductive ceramic shell 3 of the field coil is equal 
to 0µ . 

Numerical solution of the problem was carried out 
by combination of professional FEM-based code 
QuickField [5] supplemented with a number of single-
purpose user programs written in Matlab (Simulink) 
and Borland Delphi. 

 
Fig. 3. The details of the coil  

 
Selected results 

It turned out that meshes with more than about 
100000 elements provide sufficiently accurate (three 
valid digits) computation of magnetic field and 
consequent integral quantities such as energy, total 
Joule losses, total Lorentz force etc. The best 
parameters from the viewpoint of induction heating 
(see [6]) are 1000I = A, 5f = kHz, and 30β = ° . 
Fig. 4 depicts the static characteristic of the system for 
these values. 
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Fig. 5. Static characteristic of the system 

 
The dynamic characteristic was first determined 

without damping (aerodynamic resistance of the gas 
medium was neglected). Now the characteristic 
depends only on the starting position S + h (the 
significance of symbol h follows from Fig. 3) and 
contains undamped oscillations (Figs. 5 and 6).  

 
Fig. 5. Dynamic characteristic of the system (ζ = ζ(t)) 
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Fig. 6. Dynamic characteristic of the system (v = v(t)) 

Finally Fig. 7 contains the dependencies of amplitudes 
and maximum velocities on the starting position. 
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Fig. 7. Dependence of the maximum lift and velocity of the sphere 

on starting position ζ 
 
In order to prevent the sphere from oscillations the 

starting position S should be as near as the end 
position E characterized by E 0.0975ζ = m. 

As for damping due to aerodynamic resistances, we 
supposed that the process of heating is realized in 
argon. The coefficient of aerodynamic resistance xc  
for free gas medium that is a function of the Reynolds 
number and estimated average velocity 0.5v =  m/s of 
movement was calculated according to [7]. Fig. 8 
shows damping under normal atmospheric conditions 
and under a pressure.   

 

Fig. 8. Influence of damping (normal atmospheric conditions), 
starting position S = h (Fig. 3) 

 
Even in case of the normal atmospheric conditions 

the starting position S should be as near as the end 
position E. 

 An example of the obtained temperature field for 
time 580t = s, starting position 0.08ζ = m and 
optimal heating parameters 1000I = A, 5f = kHz 
and 30β = ° is depicted in Fig. 9. It can be seen that 
the temperature is distributed fully uniformly overall 
the sphere, which is caused mainly by its high thermal 
conductivity. Somewhat lower temperature along its 
surface is because of the heat convection into ambient 
medium.   

 
Fig. 9. Distribution of temperature field in the sphere  

( 1000I = A , 5f = kHz, 30β = ° ) 

V.  CONCLUSION 
Damping of the body due to its aerodynamic 

resistance during the process of its lifting is very low, 
so that it is desirable to start it near the balance 
position. In such a case the oscillation are small, 
characterized by low velocities and, therefore, low 
variations of convective heat transfer coefficient α..  

Next work in the field will be aimed at the 
investigation of various other shapes of the inductor in 
order to accelerate the process of heating and increase 
its efficiency 
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