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 Abstract — The paper presents an algorithm for 
numerical computation of surge phenomena on a one-
phase overhead or cable line with distributed parameters 
that consists of an arbitrary number of uniform parts. 
The algorithm was tested on a number of examples, in 
common with the stability and convergence of solution. 
The method can be used for calculation of the 
overvoltage that may occur in the course of feeding 
transformers or AC rotating machines by voltage 
containing steep pulses. 

I.  INTRODUCTION 
OLUTION of the overvoltage phenomena in 
electrical power networks originating from 
atmospheric discharges or switching processes is 

of fundamental importance for design of appropriate 
protective devices and for assurance of reliable 
operation of the system. It is also very important for 
safety of near computer networks and telecommu-
nication devices whose operation can be affected in an 
undesirable way; overvoltages can lead to 
considerable material losses caused by damaging of 
transferred data files or even by destruction of HW. 

Many papers deal with theoretical investigation of 
the overvoltage phenomena only in separate parts of 
electrical power systems, for example on an overhead 
or cable line, in the high-voltage winding of a 
transformer or in the stator winding of an 
asynchronous or synchronous machine. Distributions 
of voltages and currents are described by partial 
differential equations of hyperbolic type in common 
with the boundary and initial conditions and these 
equations are solved. But reliable ideas about 
processes associated with the overvoltage may be 
obtained only from a complete solution of the whole 
electrical power system, which leads to much more 
complicated mathematical models. 

The paper represents the first part of the task. It 
deals with a one-phase line, uniform by parts. Its 
beginning and end are connected to electric circuits 
containing lumped parameters R , L  and C , that are 
described by ordinary differential equations. The 
corresponding mathematical model can be solved 
analytically, semianalytically or numerically. The 
analytical solution can be realized, however, in only 
few specific cases [5]. Some authors (e.g. [2]) applied 
the Laplace transform, which resulted in a system of 
ordinary differential and algebraic equations that are 
much easier to solve. Other authors used semi-
analytical approach (originally an analytical way of 
solution passed at a certain stage to a numerical way 
(e.g. [1], [4]). Another method is based on an 
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approximation of the given circuit with distributed 
parameters by a ladder network consisting of two-
ports with lumped parameters, i.e. the circuit is 
discretized physically. Its analysis can easily be 
carried out by a suitable professional circuit program. 
If such a program is unavailable, the mathematical 
model of the ladder network can be expressed by a 
system of ordinary differential equations solvable by 
any good mathematical program. The last way consists 
in a numerical solution of partial differential equations 
of the line [3] and this way is dealt with in the paper.  

II.  CONTINUOUS MATHEMATICAL MODEL  

Consider a cascade connection of two uniform lines 
of lengths 1d  and 2d . Both lines generally differ by 
their parameters , , , , 1, 2i i i iR L C G i = , see Fig. 1. The 
beginning of line 1 is connected to a source of voltage 
of a given time evolution and its end to a passive 
circuit C containing lumped parameters , ,R L C . Our 
goal is to find distribution of voltage ( ),u x t  and 

current ( ),i x t  in the definition area ( ),x tΩ  where 

( )1 20, , 0.x d d t∈ + >  

 
Fig.1. Arrangement of the investigated one-phase line 

 
Both voltage u  and current i  in the definition area 

Ω  are described by differential equations (see, for 
example [5]) 

n n
u iR i L
x t

∂ ∂
− = +

∂ ∂
,                     (1) 

n n
i uG u C
x t

∂ ∂
− = +

∂ ∂
,                    (2)                   

where 10 x d< ≤  for 1n =  and 1 2d x d< <  for 2n = . 
The boundary conditions read: for 0t >  

( )1 0 00 , , 0x F u i t= ⇒ = , 

( )1 2 2 e e, , 0x d d F u i t= + ⇒ =  
where 1F  and 2F  express relations between voltage 
and current at the entry 1 and end 2 two-ports of the 
line, respectively. In a general case, these relations are 
again systems of ordinary differential equations, in 
case of simple two-ports we obtain a single differential 
equation and if the two-port is created by a resistance 
we have an algebraic equation. If at the entry voltage 

( )0u t  is applied, we can replace general equation 

( )1 0 0, , 0F u i t =  by function ( )0u t . 
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The interface conditions between parts 1 and 2 
express continuity of voltage ( ),u x t  and current 

( ),i x t  for 1x d= . 
The zero initial conditions are accepted for our 

case: ( ),0 0u x =  and ( ),0 0i x = . 

III. DISCRETE MATHEMATICAL MODEL 
Numerical solution of partial differential equations 

(1) and (2) is carried out by an implicit Wendroff 
difference approximation (see, for example, [6]). The 
procedure consists of several steps: 
• The system (1) and (2) is first modified in the 

following way: 

11, 12, 0n n
u ik i k
x t

∂ ∂
+ + =

∂ ∂
,                (3)                                      

21, 22, 0n n
i uk u k
x t

∂ ∂
+ + =

∂ ∂
                (4)                                       

where 11, 12, 21, 22,, , ,n n n n n n n nk R k L k G k C= = = = , 
1, 2n = . 

• Continuous definition area Ω  of system (3) and 
(4) is replaced by a uniform spatially-temporal 
grid of equidistant steps ,x t∆ ∆  so that 
o the line of length 1 2d d+  is discretized with 

a suitable equidistant step x∆ , so that we ob-
tain a 1D geometrical grid of 1 2N N+  ele-
ments and 1 2 1N N+ +  nodes, where  

1 1 2 2/ , /N d x N d x= ∆ = ∆ , 
o the semibounded temporal coordinate t  is 

discretized with an equidistant step t∆ , so 
that we get a system of discrete time levels 

lt l t= ⋅ ∆  where 0,1,2,l = K , 
o for an arbitrary k-th element of the difference 

grid we use (according to the scheme shown 
in Fig. 2) the Wendroff approximation of (3) 

( )

1, , 1, 1 , 1

11,
, 1, , 1 1, 1

12, , 1 , 1, 1 1,

1
2

4

0
2

k l k l k l k l

n
k l k l k l k l

n k l k l k l k l

u u u u
x x

k
i i i i

k i i i i
t t

+ + + +

+ + + +

+ + + +

− −⎛ ⎞
+ +⎜ ⎟∆ ∆⎝ ⎠

+ + + + +

− −⎛ ⎞
+ + =⎜ ⎟∆ ∆⎝ ⎠

        (5) 

    and modify it as follows 
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o analogously, , equation (4) can be (according 
to the Wendroff difference scheme given in 
Fig. 3) approximated by expression 

 

 
Fig. 2. Scheme of the Wendroff difference approximation  

of equation (3)  

( )

1, , 1, 1 , 1

21,
, 1, , 1 1, 1

22, , 1 , 1, 1 1,

1
2

4

0
2

k l k l k l k l

n
k l k l k l k l

n k l k l k l k l

i i i i
x x

k
u u u u

k u u u u
t t

+ + + +

+ + + +

+ + + +

− −⎛ ⎞
+ +⎜ ⎟∆ ∆⎝ ⎠

+ + + + +

− −⎛ ⎞
+ + =⎜ ⎟∆ ∆⎝ ⎠

       (7) 

   that is rewritten into form 
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Fig. 3. Scheme of the Wendroff difference approximation  

of equation (4) 
 

• Modified equations (6) and (8) for all 1 2N N+  
elements of the difference grid will create a sys-
tem of ( )1 22 N N+  equations for ( )1 22 1N N+ +  
unknowns. These equations are supplemented by 
algebraic approximations of equations 

( )1 0 0, , 0F u i t =  and ( )2 e e, , 0F u i t = . In case that 
these equations are algebraic we can include them 
directly into the system. So we obtain a system of 

( )1 22 1N N+ +  linear algebraic equations that 
may be written in a matrix description 

1l l+ =A X B X ,                          (9)                                     

 vector 1l+X  containing elements , 1 , 1,k l k lu i+ +  and  
lX  elements , ,,k l k lu i , 1 21, , 1k N N= + +K . 

• Solution of (9) provides the values of , 1 , 1,k l k lu i+ + , 

1 21, , 1k N N= + +K  at the 1l + − th time level, 
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starting from values , ,,k l k lu i , 

1 21, , 1k N N= + +K  at the previous l − th time 
level that are known. The algorithm was realized 
by own code HOMVED 4  written in Borland 
Delphi. 

IV. TESTING EXAMPLE 
The algorithm is validated on an example whose 

analytical solution is known. Beside the verification, 
we also tested its basic properties, especially its 
numerical stability and convergence. 

A uniform line of length 100d = m ( 1n = , see 
chapter 2) and parameters , , ,R L C G  per unit length 
fed from a source of harmonic voltage ( )0u t  is loaded 
by resistance eR . The input data are: 
• ( ) ( )0 0, 100sin , 2π , 1u t u t t f fω ω= = = = MHz 

(so that 6
p 1/ 10T f −= = s), 

• 33 10R −= ⋅ Ω/m, 63 10L −= ⋅ H/m, 910G −= S/m, 
128 10C −= ⋅ F/m, 

• e 1000R = Ω. 
Our task is to find the distribution of voltage ( ),u x t  

along the line in the steady-state operation regime. 
The analytical solution to the problem may be 

expressed (see, for example, [5]) by relation 

0 e
0

e 0

tgh
( ) = cosh sinh

tgh
Z Z
Z Z

d
U x U d x

d
γ

γ γ
γ

⎡ ⎤+
−⎢ ⎥+⎣ ⎦

 (10) 

where 

0
j( j )( j ) ,
j

Z
R LR L G C
G C

ωγ ω ω
ω

+
= + + =

+
 (11)                           

and 
0 100 j0U = + , e 1000 j0Z = + .   

The numerical solution was realized in spatially-
temporal area ( ),x tΩ  on grids with various steps x∆  
and t∆  satisfying the condition of stability (see, for 
instance, [4]) 

k
xt t

v
∆

∆ ≤ ∆ =                       (12) 

where v  denotes the velocity of wave propagation 
along the line whose value is approximately (see [5]) 

1v
LC

≈ .                         (13) 

Integration of equations (1) and (2) was performed 
for a sufficiently long time in order to reach the steady 
state. A greater number of numerical computations 
with various time and space steps were carried out to 
test the stability and convergence of solution. We 
started from zero initial conditions and it turned out 
that the transient took only a relatively short time. The 
steady state was practically reached for time p5t T> . 

Fig. 4 shows the time evolution of voltage ( )0u t at the 

beginning of the line (A: 0x = ) and voltage ( )eu t  at 
its end (C: x d= ). While damping of the voltage 
wave is almost negligible, the phase shift between 
both waveforms A and C is almost 180 °. These 

results correspond to the analytical solution, 
2

e 100.03 j3.902 10U −= − − ⋅ V (see (10, 11), x d= ). 
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Fig. 4. The testing example: A - voltage u0 (t) at the beginning of the 

line, C - voltage ue (t) at the end of the line 
 

Starting from the results obtained, we can draw the 
following conclusions: 
• Solutions that were carried out on a difference 

grid with steps x∆  and t∆  satisfying (12) are 
numerically stable. 

• Available accuracy of the numerical solution is 
fully comparable with the analytical solution. 

V.  ILLUSTRATIVE EXAMPLE 
 

A cable line of length 1 50d = m and parameters per 

unit length 4
1 7 10R −= ⋅ Ω/m, 7

1 4 10L −= ⋅ H/m, 
8

1 3 10G −= ⋅ S/m, 10
1 2 10C −= ⋅ F/m is connected in 

cascade with an overhead line of length 2 50d = m and 

parameters per unit length 4
2 7 10R −= ⋅ Ω/m, 

6
2 2 10L −= ⋅ H/m, 9

2 1 10G −= ⋅ S/m, 11
2 10C −=  F/m. 

A voltage pulse in the form of one half of sinusoidal 
curve is applied at the beginning of the cable line. 

p0 / 2 :t T< <   

 ( ) ( ) 6
0 0, 100sin , 10u t u t t fω= = = Hz,   

7
p / 2 5 10T −= ⋅ s, 

p / 2 :t T>   ( ) ( )0 0, 0u t u t= = . 
The end of the overhead line is loaded by  

1.  Resistance e 100R = Ω,  
2.   Serial combination of lumped parameters 

e 20R =  Ω and e 0.5L = H. 
After verification of the convergence on a grid with 

1 2 1x x∆ = ∆ = m, 93 10t −∆ = ⋅ s ( 9
k1 8.945 10t −∆ = ⋅ s, 

9
k2 4.472 10t −∆ = ⋅ s, see (12) and (13)) we calculated 

for load of type 1) ( 100R = Ω) distribution of the 
voltage waveforms along both lines (Fig. 5) for 
various time instants pt : 

• 7
p 2.25 10t −= ⋅ s – the wave front reached ap-

proximately one half ( 1 / 2d ) of the cable line, 

• 7
p 4.50 10t −= ⋅ s – the wave front reached ap-

proximately the interface ( 1d ) between the cable 
and overhead lines, 
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• 7
p 5.58 10t −= ⋅ s – propagation of the reflected 

wave from the interface causing overvoltage 
along the cable, while the basic wave passes 
through the overhead line 

• 7
p 6.30 10t −= ⋅ s – the basic wave passed through 

the overhead line and enters the load circuit, 
which causes propagation of a reflected wave 
along this line; reflected wave along the cable line 
approximately reaches its beginning.  

• 7
p 7.00 10t −= ⋅ s – reflected waves propagate 

along both lines, which results in higher overvolt-
age.  

The wave process on both lines is in a qualitative 
accordance with the case of propagation of a 
rectangular wave presented in references (see [3], page 
572). Even in that case overvoltage reaches a value 
that is almost two times higher than the operation 
voltage. 

Fig. 6 depicts time dependencies of voltages at the 
beginning of the cable line ( 0x = , curve A), at the 
place of interface of both lines ( 50x = m, curve B) 
and at the end of the cable line ( 100x = m, curve C) 
for load e 100R = Ω. Fig. 7 shows time dependencies 
at the same places for load consisting of the serial 
combination of e 20R =  Ω and e 0.5L = H. In both 
cases the resultant overvoltage is well observable. 
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Fig. 5. Illustrative example: distribution of voltage waveforms along 

both lines at various time instants pt  for load e 100R = Ω 
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Fig. 6. Illustrative example: time dependencies of voltage at the 

beginning of the cable line ( 0x = , curve A), at the place of 
interface of both lines ( 50x = m, curve B) and at the end of the 

cable line ( 100x = m, curve C) for load e 100R = Ω 
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Fig. 7. Illustrative example: time dependencies of voltage at the 

beginning of the cable line ( 0x = , curve A), at the place of 
interface of both lines ( 50x = m, curve B) and at the end of the 

cable line ( 100x = m, curve C) for load e 20R = Ω and e 0.5L = H 

VI. CONCLUSION 
The paper represents the first part of the project and 

contains formulation of a computation algorithm for 
numerical calculation of transients on a one-phase line 
uniform by parts. In the next work this algorithm will 
be extended to three-phase lines and then to more 
complex circuit structures with distributed parameters. 
Finally it will be used for solution of surge phenomena 
in electrical power systems including supplied devices 
(transformers, rotating machines). 
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