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 Abstract — Laplace transforms in two variables can 
very be useful for solving certain partial differential 
equations, namely those describing transient behaviour 
of linear dynamical systems. In practice, it is often either 
too difficult or even impossible to obtain corresponding 
originals by analytic methods. In such cases methods that 
enable getting original numerically have to be applied. 
The 2D-NILT method based on FFT, recently published 
and verified in Matlab language, seems to be well usable. 
Its main advantage lies in high speed of calculation, 
however, it is necessary to connect it always with proper 
technique of acceleration of the convergence to achieve  
required accuracy. It was shown either the epsilon or the 
quotient-difference algorithms are very suitable for this 
purpose. In the paper an error analysis, comparison and 
evaluation of the optimal NILT parameters are newly 
presented.  

I. INTRODUCTION 

HE paper closelly follows the author’s 
previous works devoted to ways of getting 

originals of two-dimensional Laplace transforms 
numerically. Namely, the 2D-NILT method is based 
on the summation of the infinite two-dimensional 
complex Fourier series which approximate the 
definition Bromwich integral, in part evaluated by the 
FFT [1]. To ensure a desired accuracy of results both 
the ε–algorithm of Wynn [2] and the quotient– 
difference algorithm of Rutishauser [3] were partially 
verified at the process of acceleration of the 
convergence of the infinite series [4,5]. As is shown 
e. g. in [2] both these algorithms should theoretically 
lead to the same results, more precisely they are both 
equivalent to the Padé approximation method in case 
that power series are considered. However, in practice, 
due to the different ways of their numeration they lead 
to slightly different results. Herein both methods are 
compared in light of their efficiency and numerical 
stability. Moreover the error analysis is performed 
leading to the evaluation of optimal NILT parameters, 
namely to the number of terms for the FFT and the 
accelerating algorithms. The computations have been  
performed using the Matlab language environment, for 
many representative transforms of rational, irrational 
and transcendental patterns known originals [6]. 

II.   APPROXIMATE FORMULA AND ERROR ANALYSIS  

The two-dimensional Laplace transform of the real 
function of two variables ),( 21 ttf , 0,0 21 ≥≥ tt , fits [6]  
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Under the basic premise 2211),( 21
ttMettf αα +< , M , 1α , 

2α  as positive real constants, and ),( 21 ssF  defined 

on a region  }]Re[]Re[:],{[ 2211
2

21 αα >∧>∈ ssss C , 
the original function ),( 21 ttf  is given by 
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The double integral has to be evaluated numerically. 
Hereafter it will be shown that the simplest way of the 
numerical integration leads to the approximate formula 
at which the relative error is theoretically adjustable. 
Substituting iii jcs ω+= , 2,1=i , in (2), and applying 
the rectangular rule of the integration, with generalized 
frequency steps ii τπ2=Ω , 2,1=i , we can get the 
approximate formula in the form 
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Reflecting (1) and iiii jncs Ω+= , 2,1=i ,  the result is 
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Further, divide integration ranges into infinite numbers 
of intervals iτ , 2,1=i . We get from (4)  
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where ),( 21 ttg  is the exponentially dumped original 
function. Now for each ) ) 22211121 1,1,],[ ττ +×+∈ lllltt  
a new function  
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can be defined up to be the periodical function on the 
whole 2D interval, with the periods 1τ  and 2τ . In this 
case (5) can be rewritten into  
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where the terms 
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act as the coefficients of the 2D complex Fourier series 
of the function (9), namely  
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After substituting (7) into (3) we have 
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Now interchanging the summations and considering 
(9) the result is 
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We found that the exponentially dumped approximate 
original function can be also expressed as the infinite 
double sum of newly defined periodical functions (6). 
Now take the 2D interval of our interest, in which the 
original ),( 21 ttf  is required, as ) )2121 ,0,0],[ ττ ×∈tt . 
Then, considering (6) in its alternative form      
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the function ),( 21 ttf  occurs in the expression 
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Further, arranging (11) into the form 
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substituting (12), (13), and considering (10), we have  
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By this we succeeded to find the absolute error as 
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Now we can determine a limit absolute error 

),(),( 2121 ttttM εε ≥        (17) 
as follows. 

Take into account the basic assumption for the 
validity of (2), namely 2211),( 21

ttMettf αα +< , and 
substitute into (15). We get the limit absolute error as 
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where the basic assumptions 2211 αα >∧> cc  and the 
formula for the sum of the infinite geometric series 
were applied. Besides, from the last equation, the limit 
relative error is defined as 
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We can see, this error has the constant value on all the 
interval. From (18) and (19) it is possible to derive 
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Let both terms influence the limite relative error in the 
same way, which is valid for )()( 222111 ατατ −=− cc . 
Then it is possible to find relations between the above 
coefficients as 
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when, for values 1<<Mrε , it is approximately valid 
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The equations (21) or (22) enable choosing paths of 
integration from the required limit relative errors. 

 III.  NUMERATION AND CONVERGENCE  ACCELERATION 

When supposing real valued originals ),( 21 ttf  then 
the equation (3) can be decomposed into the form 
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In practice it is usually necessary to find a solution 
on the whole 2D region, and the computation is done 
on some chosen grid of discrete points. Expressing the 
original at iik Tkt
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As it has followed from the error analysis the relative 
error is predictable on the interval 21 ,0,0 ττ ×=Οerr , 

while (27) leads to 2211max )1(,0)1(,0 TNTN −×−=Ο . 
To fulfill the necessary condition, that is errmax Ο⊂Ο , 
the variables iτ  are chosen appropriately as iii TN=τ , 

2,1=i . In practical calculations, to have some margins, 

we choose the interval as max2max1calc ,0,0 tt ×=Ο , 

where iii TMt )1(max −= ,  and 2ii NM = , 2,1=i . 

It is clear that to come near to the predicted relative 
error the infinite sums in (27) must be evaluated as 
much precisely as possible. In practice, of course, only 
certain finite numbers of terms can be summed which 
evidently leads to additional truncation errors. These 
can be suppressed by means of a proper chosen 
method for accelerating the convergence of infinite 
series. Due to the exponential terms (28) the infinite 
series in (27) can be decomposed in the power series 
while denoting iiiTjk

i ez Ω= , 2,1=i . It is known that 
just for such the power series either the epsilon or the 
quotient-difference algorithms are very suitable to be 
used for the accelerating process [2,3]. Theoretically, 
both methods lead to the same results, more precisely 
they are equivalent to usage of the Padé approximation 
method. However, due to the different paths of their 
numeration they can lead to somewhat different results 
as round-off errors can play their role. 

At first, to accelerate calculation the first im
iN 2= ,  

im  integer, 2,1=i , terms are summed using the FFT, 
and subsequently residual infinite series are undergone 
to the accelerating algorithm. In practice, of course, 
again only a finit number of terms can be considered 
for this process, let us say 12 +P . Thus we can think 
the residual finite sum as 
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however, the value ),(lim),( PzSzS
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want to know. Applying a method for accelerating 
convergence of the series a relatively small P  can be 
chosen to get a result coming near to the ),( ∞zS . 
 
 
 
 
 
 
 
 
 
 
 
 

The ε-algorithm can shortly be explained by the 
diagram in Fig.1a, the q-d algorithm in Fig.1b (valid 
exactly for 2=P ) [2,3].  

 A. Epsilon algorithm  

The first column is formed with 
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the second one with partial sums  
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The sequence of serial approximations L,,, (0)
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converges usually much more quickly than the original 
sequence of the partial sums (32). Thus, starting with 

12 +P  partial sums, the (0)
2Pε  term is the wanted result. 

 B) Quotient-difference algorithm 

The result is obtained through a continued fraction 
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where its coefficients are done along Fig.1b as follows. 

The first two columns are formed as 
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Finally the coefficients nd , Pn 2,,0 L= , are given by 
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In contrast to the epsilon algorithm, the quotient-
difference algorithm does not require the repetitional 
assesment of these coefficients for each new variable 
z , which results in slightly faster computation.  

IV.   OPTIMAL PARAMETER ESTIMATION 

In this section it will be experimentally determined 
how to choose the 2D-NILT formula parameters, 
namely numbers of terms for the FFT (marked by N) 
and additional terms for the accelerating algorithm 
(marked by P), so that (22) could be applied correctly. 
For this purpose the root-mean-square error 
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was introduced to show an overall error quantitatively,  
handling the grid of 64 x 64 points. About 50 various 
2D rational, irrational and transcendental transforms 
taken from [6] have been tested, see examples in Fig.2.  
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Fig. 1. The epsilon and q-d algorithm diagrams
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Fig. 2. Experimental 2D-NILT parameter estimation 
As is obvious without using accelerating algorithm 

(the case 0=P ) the error cannot be suppressed under 
approximately 510− . To suppress the error significantly 
the accelerating algorithm is essential. From the other 

hand it seems that there is some optimal number of 
terms to be used, likely 3=P . From this number the 
error is often increasing or an instability can arise. The 
most probably round-off errors start to play their role. 
The q-d algorithm shows better numerical stability 
compared to the ε-algorithm while their efficiencies 
are roughly equivalent. It is due to the fact that in (33) 
there is often necessary to divide by a difference of 
two big close numbers, while it does not exist at the   
q-d algorithm. Generally, it seems for routine purposes 
the number of terms for the FFT is sufficient 512=N . 

V.   CONCLUSIONS 
The comparison were also done with other recently 

published 2D-NILT method, namely based on the fast 
Hartley transform computations [7]. The appropriate 
Laplace transforms under testing in Fig. 2 were chosen 
just on this account. The results taken up from this 
paper are shown in Tab.1.  

TABLE I.  RMS ERRORS OBTAINED IN FHT METHOD [7] 

Original ),( 211 ttf  ),( 212 ttf  ),( 213 ttf  

2L  71081.2 −⋅ 51075.1 −⋅  61010.1 −⋅  

As we can see RMS errors are about 4 orders bigger in 
average when comparing with the discussed 2D-NILT 
method, while choosing above approved parameters. 
The relevant program procedure has been developed in 
Matlab language. Besides its basic version, see e.g. [5],   
a generalized one was made to enable solving tasks as 
in [8], where 2D vector transforms are handled with.       
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