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Abstract  — The electrical impedance tomography is a 
means how to localize inhomogeneities in some bordered 
homogenous medium when the object under investigation 
is accessible to the measuring only at specific points of its 
boundary. In the method various optimization techniques 
are in use. For their successful application it is useful to 
determine Jacobian which helps to accelerate an iterative 
process. In the paper two ways of Jacobian calculation 
are compared above all from the point of view of the 
CPU time. Namely, the first method is based on the 
reciprocity theorem application, the second one then on 
the direct differentiation of the nodal-analysis matrix 
equation. Both methods utilize a precomputed properly 
chosen finite-element mesh, and has been programmed in 
the Matlab language environment.  

I. INTRODUCTION 

ONSIDER a two-dimensional region 
characterized      by a conductivity γ , which 

is discretized using the finite element method [1,2]. 
Then its boundary contains the relevant number of 
nodes, when some of them can be used as inputs for 
driving and the others as outputs for measuring, see 
Fig.1. 

  

 

 

 

 

 
Fig. 1 Selected outer input/output nodes 

The number of upper-most nodes (terminals) chosen 
for testing process is indicated by m, the input by the 
pair i-j, and the output by the pair k-l. There are many 
various possibilities how to choose the pairs of these 
terminals, and it strong depends on the problem under 
consideration. For our goal it does not matter which 
ones are chosen, we will just assume that M different 
variants of the input/output terminals are somehow set. 
Neither a form of the finite-element mesh will play an 
essential role in the CPU times comparison. We will 
just consider that the region is divided into N finite 
elements. With the above designations an assesment of  
Jacobian means to compute the matrix J of the order 

NM × , where its particular elements are equal to the 
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absolute sensitivities rsV γ∂∂ , where Ms L,2,1= , 
and Nr L,2,1= . It means  the sensitivities of output   
voltages corresponding to all the input/output variants 
to changes of the conductivity of every finite element 
are covered by the Jacobian. 

From point of view of the circuit theory the system 
can be considered as the passive linear multiterminal 
network since it is composed only of certain number of 
appropriate linear conductances. In both methods the 
nodal analysis matrix equation is used   

IGV =  ,  (1) 

where G is a conductance matrix, V is a column vector 
of the nodal voltages, and I is a column vector of the  
currents reflecting independent current sources. The 
reference node is always advantageously set inside the 
region. However, the equation (1) will be treated by 
different way according to chosen method as follows. 

II. RECIPROCITY THEOREM APPLICATION 

At first we show how the reciprocity theorem can be 
utilized for the absolute sensitivity calculation. Choose 
two pairs of external nodes, a–b as the input and c–d as 
the output, see Fig. 2 [3]. The aim is to calculate the 
absolute sensitivity of the output voltage cdV  to the 
change of a certain conductivity kG , i. e. the value 

kcd GV ∂∂ , when the input is supplied from the current 
source baI . Consider further the situation when the 
positions of supplying and measuring are interchanged. 

 
  
 
 
 
 
 
 

 
      

 

 

 

 

 
 

Fig. 2. Problem of sensitivity calculation (part 1) 

Suppose the region containes n conductances. Then 
considering Tellegen’s theorem we get for the powers 
from Fig. 2 the formulae 
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Let current sources baI  and dcI  act simultaneously at 
both pairs of the terminals, see Fig. 3. 

 
 
 
 
 
 
 
 
 
Fig. 3. Problem of sensitivity calculation (part 2) 

 
Considering again Tellegen’s theorem we have 
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Now taking linearity of the system into account, and 
using superposition theorem, we can write 

∑
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Substituting (2a) and (2b) into (4) we get after simple 
arrangement  
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Now when defining  

III dcba ==      (6) 

then the equality 
  cdab VV =′      (7) 

implies of the reciprocity theorem. Then (5) leads to 
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Finally the absolute sensitivity in demand is got as  
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Now consider the r–th finite element consists of R 
conductances equal to 

)()( r
kr

r
k KG γ=  ,  Rk ,,2,1 L=  ,  (10) 

where )(r
kK  are parameters resulting from the finite 

element method. Then the whole change of the output 
voltage is given by the total differential 
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and, therefore  
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where (9) was taken into account. 
Note: 

The formula (12) is an analog to the relation which 
was derived in [4] from the point of view of the field 
theory for the continuous case, namely 

∫
Ω

ΨΦ Ω∇⋅∇−=
∂
∂

r

dVV
I

V rr

r

cd 1
γ

 ,  (13) 

where rVΦ  and rVΨ  are potential distributions related 
to the surface element rΩ , generated due to acting a 
current I on the a–b and c–d terminals, respectively, 

rγ  is its conductivity, and ∇  is the nabla operator. 

 Thus for the Jacobian computation it is necessary 
to solve not only the equation (1) leading to )(r

kV  

values but also another one resulting in )(r
kV ′  

determination. Considering (10) we can write these 
equations as 

   IKV =γ  (14a) , IVK ′=′γ  ,      (14b) 

where K is the system matrix resulting from the finite 
element method. As the matrix is very sparse this fact 
should be taken into account not to vaste the computer 
memory and to save the CPU time. In Matlab language 
both equations (14) can be solved in parallel using the 
Gaussian elimination method very effectively, taking 
them directly in sparse forms, as (in Matlab notation) 

I\KV ~~ 1−= γ  ,    (15) 

where ],[~ VVV ′=  and ],[~ III ′=  matrices consist of 
the original vectors as their columns. Moreover, the 
right side of (15) can contain not only two but all the 
necessary current vectors which are needed for the 
Jacobian NM ×  matrix assesment, formally written 

JJ I\KV ~~ 1−= γ  .    (16) 

Finally from the particular columns of the matrix JV~  
(nodal voltage vectors) the necessary branch voltages 
are determined being then able to use (12). These are 
already simple little CPU-time consuming operations.   

III. NODAL ANALYSIS EQUATION DIFFERENTIATION 

An alternative method of the Jacobian calculation 
lies in the direct differentiation of the nodal analysis 
matrix equation (1). Thus following it we can write  

0IGV =
∂
∂

=
∂
∂

rr γγ
)(  ,    (17) 

where 0 is a zero column vector. This is due to the 
fact that the vector I contains invariables (currents of 
independent sources). The (17) will proceed at 
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and, finally 

Gk 

Idc 

b 

c 

d

Vcd
´´ Vab

´´ 
Vk

´´ 

Ik
´´ 

Iba 

a 



International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004
 

 103

IGGGV 11 -

r

-

r γγ ∂
∂

−=
∂
∂   ,   (19) 

where IGV 1−=  was substituted according to (1). 
This formula corresponds to one used as well in [5]. 
Because of (10) the rγ∂∂G  matrix in (19) contains 
altogether zero elements with the exception of those 
that belong to the r–th finite element. Thus this 
differentiation leads to the )()( r

kk
r

k KG =∂∂ γ  terms at 
relevant places of the matrix. Besides, if the equation 

111 -- KG −= γ  is considered, the (19) results in 

IKKKV 1)(12 -r-

r

−−=
∂
∂ γ
γ

 ,   (20) 

with )(rK  as a finite–element system matrix reduced 
as explained above.  

To compute the Jacobian NM ×  matrix effectively 
it is again possible to replace the current vector I by 
the matrix JI  containing all the necessary input 
current vectors which are needed for this calculation. 
Moreover, because of the necessity to assemble the  
reduced matrix )(rK  repeatedly for all the finite 
elements (i. e. N times), the further procedure will be 
portioned into two steps as follows. Firstly, in Matlab 
notation, the matrix 

JJ I\KV 1−= γ      (21) 

is computed only once by the Gaussian elimination 
method. Then for each finite element the matrix of 
particular vectors of nodal voltage sensitivities is got  

J
r

r

J VK\K
V
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∂
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γ

 .   (22) 

Herein the Gaussian elimination method is again used 
to solve the system in the parenthesis in parallel. The 
(22) is solved repeatedly for all Nr L,2,1= . All the 
above operations run again on the sparse matrices. 
 Now the absolute sensitivity of a considered 
output voltage can be obtained as 
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where the particular nodal voltages sensitivities occur 
on the right side. These can already be got from (22) 
by simple little CPU-time consuming operations. 

IV. EXPERIMENTAL METHODS COMPARISON 

 A. Finite-element mesh description  

To compare the above discussed methods consider 
a simple 2D circular region Ω  with a unitary radius, 
discretized in the way as shown in Fig. 4. Generally 
the region is divided into p concentric zones of the 
size p1  in a radial direction and q sectors of the 
angel qπ2  in a tangential direction [2,3]. The Fig. 4 
shows the case for p = 4 and q = 12. Thus from the 
total number N = pq elements the q(p–1) are of the 
trapezoidal form, and the q in the most inner zone are 
of the triangular form. An ordinal number of element 

assignes simultaneously the ordinal number to a node 
related to the upper right corner. In Fig. 4  the upper-
most nodes are numbered in this way. The reference 
node 0 is put in the centre of the region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 In Fig. 5 there are possible r–th finite elements in 
detail. Nodal indices are correct with the exception  

kqr = , k integer. In this case the indices 1+r  and 
1+− qr  must be replaced by the indices 1+− qr  

and 12 +− qr , respectively. In Fig. 4 it is pertained 
to the elements 12, 24, 36 and 48. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The inner three or four conductances belong to the r–
th finite element (drawn by a solid line), the radial 
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Fig. 4. Finite–element mesh under 

Fig. 5. Particular finite elements in detail 
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Because of the centric symmetry the number of their 
different values is equal to the number of zones in 
radial direction n. In Matlab notation the zone index i  
can be got as )( qrceili =  at first. Then values of the 
conductances are determined as 

)()(
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i
r

i
r

i
r KGG γ==   , pi ,,2,1 K=  ,  (24) 

)()( i
tu

i
tu KG γ=  ,   pi ,,2,1 K=  ,  (25) 

)()( i
tl

i
tl KG γ=  ,   pi ,,3,2 K=  ,  (26) 

where γ  is the conductivity, and the finite-element 
parameters are given according to [2,3]. 

B. Jacobian calculation 

The above chosen finite-element mesh leads to the 
implications for the particular methods as follows. 

For the reciprocity theorem method the formula for 
the absolute sensitivity (12) results in  
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if qr >  is valid (two upper pics in Fig. 5), and when 
R = 4. Otherwise, in the case R = 3 (the bottom pic in 
Fig. 5), the last term in (27) is missing.  
 For the method of nodal-analysis matrix equation 
differentiation the reduced matrix )(rK  has the form 
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if qr >  is satisfied, that is only 12 elements in this 
matrix have nonzero values. Similarly, for qr ≤ , the 
reduced matrix has only 4 nonzero relevant elements, 
corresponding to the lower-right square block related 
to the indices r and r+1, as can be seen above. 

For the Jacobian calculation we follow the Fig.1, 
when the number of terminals is chosen 12=m . The 
particular input/output variants are defined in Tab.1.  

TABLE I. SETUP OF INPUT/OUTPUT PAIRS OF TERMINALS 

Driving Measuring 
(1–2) (2–3), (3–4),…, (12–1) 
(2–3) (3–4),…, (12–1) 
M  M  

(11–12) (12–1) 

Their total number is given by 662)1( =−= mmM  
[4]. The number of the finite elements varies from 

48124 =×=N  (this one corresponds to Fig. 4) to 
1080018060 =×=N , namely in the series pqN = , 

where kp 4=  and kq 12= , with 15,,2,1 L=k . Such 

a choice enables spacing 12 driving/measuring upper-
most terminals around the region always regularly. 
 Both discussed methods were programmed on the 
PC with Pentium IV 2GHz/256MB. The results are 
practically the same as they differ from about 2210−  
to 2110−  in the sense of root-mean-square errors. The 
CPU time versus the finite-elements number relations 
are shown in logarithmic scales in Fig. 6. 
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Fig. 6. CPU times comparison 

A solid line corresponds to the reciprocity theorem 
method, a dashed line then to the method of the nodal 
-analysis equation differentiation. As can be seen for 
the numbers of the finite elements which are usually 
used in practice the method based on the reciprocity 
theorem is much faster. For example, for  N = 1200  
it is about 5 times, for N = 10800 already about 85 
times. The contrary result is occuring only for small 
numbers of the finite elements, approximately under 
N = 250. Of course, these conclusions are depended 
on techniques of the programming, therefore they can 
somewhat differ of those gained by other prospective 
programmers. Moreover results will also depend on a 
chosen number m of terminals under testing.  
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