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 Abstract — The paper introduces two-dimensional 
method of observation and diagnosis of non-stationary 
signals in electrical engineering. To investigate the 
methods several experiments were performed using 
simulated signals. First two-dimensional representations 
are obtained applying Wigner and Wigner-Ville 
Distribution . Then local frequency moments are 
calculated to achieve one-dimensional characteristics. It 
is shown that such characteristics preserve information 
about the nonstationarity in point of time, and can be 
used for calculation of the beginning and duration time 
of transient states. 

I.  INTRODUCTION 
EPRESENTATION of signals in time and 
frequency domain has been of interest in signal 

processing areas for many years, especially taking in 
the limelight time-varying non-stationary signals. This 
kind of representation becomes more and more 
interested also in electrical engineering. The main 
motivations which incline to joint time-frequency 
analysis originate from character of the signals which 
appear in nowadays power systems and also from 
constantly increasing requirements for signal 
processing methods.  

Frequency power converters and arc furnaces 
generate a wide spectrum of harmonic components 
which deteriorate the quality of the delivered energy, 
increase the energy losses as well as decrease the 
reliability of a power systems. Especially large 
converters systems can be considered as a sources of 
non-characteristic harmonics and interharmonics. 
Because of faults the basic component of short circuit 
current can be distorted by an exponential dc 
component, and the basic component of voltage by 
transient oscillating component. In dependence on 
transmission line parameters and the location or phase 
of occurring faults, the duration time of discussed 
transient components could reach value up from 5 to 
10 periods of basic components. The estimation of the 
components parameters is very important for control 
and protection tasks. The design of harmonics filters 
relies on the measurement of distortions in both 
current and voltage waveforms [5,6].  

The standard method for study time-varying signals 
is short-time Fourier transform (STFT) that is based 
on the assumption that for a short-time basis signal can 
be considered as stationary. The spectrogram utilizes a 
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short-time window whose length is chosen so that over 
the length of the window signal is stationary. Then, 
the Fourier transform of this windowed signal is 
calculated to obtain the energy distribution along the 
frequency direction at the time corresponding to the 
centre of the window. The crucial drawback of this 
method is that the length of the window is related to 
the frequency resolution. Increasing the window 
length leads to improving frequency resolution but it 
means that the nonstationarities occurring during this 
interval will be smeared in time and frequency. This 
inherent relationship between time and frequency 
resolution becomes more important when one is 
dealing with signals whose frequency content is 
changing rapidly [1,2]. 

A time-frequency characterization of signals that 
would overcome above drawback became a major goal 
for signal processing areas. Starting with classical 
works of Gabor, Ville and Page, there has been an 
alternative development for study of time-varying 
spectra. The concept of the Wigner distribution was 
introduced in the context of quantum mechanics, 
although reintroduced by Ville for signal analysis. In 
eighties Claasen and Mecklenbräuker, Janse and 
Kaizer, Boashash, Rihaczek, Cohen, Choi and 
Williams developed ideas uniquely situated to the 
time-frequency situation [7]. Cohen employed 
characteristic function and operator theory to derive a 
general class of joint time-frequency representation. It 
can be shown that many bilinear representations can 
be written in one general form that is traditionally 
named Cohen’s class [4]. 

Observing the recent approaches to the time-
frequency representations we can separate two main 
groups in point of the estimation manner as non-
parametric and parametric methods. Further, due to 
different structure of definition equation the non-
parametric methods can be parted into groups, which 
carry out the linear or non-linear operation on the 
signal. At least if there is a need to scale the time or 
frequency argument we treat the representations as a 
scalogram or spectrogram respectively [8,9] 

The investigations presented in the paper are scoped 
at two levels. First level includes calculation of two-
dimensional joint time-frequency representations 
when Wigner and Winger-Ville distribution is applied. 
Second level concerns calculations of local frequency 
moment of obtained two-dimensional representation 
which leads to one-dimensional function of time. 

General purpose of the work is to emphasize the 
advantages and disadvantages of proposed methods in 
point of their application for time-varying spectral 
estimation of electrical signals. Some effort to apply 
local frequency moments of two-dimensional 
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representation was also made especially in order to 
calculate the beginning and duration time of transient 
states caused by any disturbances. 

II. MATHEMATICAL BACKGROUND  
This section outlines the character of Wigner and 

Wigner-Ville distribution including basic comments 
about the advantages and disadvantages of described 
approach. The definitions and interpretation of local 
frequency moments of time-frequency distribution is 
also introduced. 

A. Wigner and Wigner-Ville Distribution 

Wigner Distribution (WD) of signal ( )x t  is bilinear 
and non-parametric transformation given by [3,7,8,9]: 

 ( ) -jWD , x x* e d
2 2x t t t ωττ τω τ

+∞

−∞

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + −∫  (1) 

and could be consider as Fourier transform of 
instantaneous autocorrelation function. Such approach 
allowed to observe time-varying spectrum. Bilinear 
operation on the signal indicates intensity in regions 
where zero-values are expected. These undesirable 
components, sometimes called artefacts or cross-terms 
are usually attributed to the bilinear nature of the 
distribution and reduce auto-components resolution, 
obscure the true signal features and make 
interpretation of the distribution difficult. For 
multicomponent real signal ( ) 1 2y x ( ) x ( )t t t= +  
Wigner Distribution can be expressed by: 

 
( ) ( )

( )
1 2

1 1,

WD ( , ) WD , WD ,

                    +2Re{WD , }
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t t t

t

ω ω ω

ω

= + +
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It is worth emphasizing that for real signals WD is real 
function and moreover is an even function of 
frequency.  

First step to reduction of the cross-term components 
is applying analytic form of the signal which is 
characterized by zero-value of the spectrum in 
negative part of frequency axis. It leads to Winger-
Ville Distribution (WVD) and allowed to avoid cross-
term components which result from interaction 
between auto-terms hold in positive and negative part 
of frequency axis, respectively. Introducing then 
analytic form of signal we can define WVD: [3,7,8,9]: 
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( )A
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X ( ) X(0)   dla =0 WD , 0 dla 0
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Ax t

ω ω
ω ω ω ω
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>
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-jx xWVD , * e d

2 2x t t t ωττ τω τ
+∞

−∞

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + −∫  (4) 

Further reduction of cross-term components is 
based on the convolution the integrand of Wigner 
equation with selected kernel function. It leads to 
Cohen’s generalization of time-frequency distributions 
[4,8,9]. 

B. Local Frequency Moments 
Two-dimensional effect of the methods, however 

very valuable when the kind of nonstationarity is 
characterized, can be inconvenient in point of practical 
using. Such suggestion leads to calculation of local 
time and frequency moments of obtained two-
dimensional representation. According to the approach 
one-dimensional characteristics can be achieved with 
preservation all information about the nonstationarity 
in time and frequency domain, separately. In this 
paper authors specially take into the limelight the local 
frequency moments of Wigner and Wigner-Ville 
Distributions. 

Local frequency moments of Wigner Distribution 
are determined by considering WD as a function of 
frequency for fixed time [3,7,8]. Zero order local 
frequency moment of WD describes equation: 

 ( ) ( ) ( ) 20
xM WD ; d x

xWD t t tω ω
+∞

−∞

= =∫  (5) 

and can be interpreted as instantaneous power of 
signal. The first local frequency moment is than given 
by: 

 ( ) ( )1
xM WD ; d

xWD t tω ω ω
+∞

−∞

= ∫  (6) 

For complex signal ( )jx( ) x( ) e tt t ψ=  Eqn. (6) can 
be derivate in the form: 

 ( ) ( ) ( ) 21M 2π ' x
xWD t t tψ=  (7) 

that consists information about instantaneous 
frequency of the signal. Unfortunately in case of real 
signal, when WD is an even function of frequency, 

( )1M 0
xWD t =  and can’t be use as index of 

nonstationarity. 
The idea introduced in the paper is to calculate the 

local frequency moment of Winger-Ville distribution 
with lower bound of integration range equal to zero. 
Proposed approach, especially considering 

( )WVD , 0x t ω =  for 0ω < , preserves information 
about the nonstationarity in point of time. Calculated 
moments could be further normalized which leads to 
definitions of applied equations in form: 

• zero order local frequency moment of WVD: 

 ( ) ( )0
x

0

M WVD ; d
xWVD t tω ω ω

+∞

= ∫  (8) 

• first order local frequency moment of WVD: 

 ( ) ( )1
x

0

M WVD ; d
xWVD t tω ω ω

+∞

= ∫  (9) 

• normalized first order local frequency 
moment of WVD: 
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Eqn. (10) can be then interpreted as a function which 
describes position of central point of the instantaneous 
spectrum for fixed time. It is worth emphasizing that 
following this interpretation, information about the 
frequency structure is lost. However information about 
the transient events is still preserved. The crucial 
significance of characteristic ( )1Ω

xWVD t  is then the 

opportunity to apply it for detection of nonstationarity 
or duration time of transient states.  

III. EXAMPLES AND RESULTS 
The character of Wigner-Ville distribution and its 

normalized local frequency moments has been tested 
for two simulated signals: sum of two cosine functions 
and transient signal in RLC branch. Sampling 
frequency equals 5kHz. Describing the local 
frequency moment we have to notice that cross-terms 
also take a part in the calculations. This influence 
manifest itself in oscillations around the true value of 
central point of spectrum which is achieved only when 
cross-term has zero-value. To avoid mentioned 
influence the authors propose to use median filter to 
suppress the oscillations. When small order of the 
filter is used no influence on dynamic of curve is 
achieved.  

A. Sum of cosine functions 
First signal, illustrated in Fig. 2a, can be described by: 

 ( )
x( ) 10cos(100 )[1( ) 1( 0.2)]
       5cos 500 [1( 0.1) 1( 0.2)]

t t t t
t t t

π
π

= − − +

+ − − −
 (11) 

According to bilinear nature of the transformation, one 
cross-term component 150Hz appear between auto-
terms 50Hz and 250Hz (Fig. 2b). Normalized local 
frequency moment smoothed with median filter, order 
50, was illustrated in Fig. 2c. We can clearly detect 
appearing time of nonstationarity. Observing 
displacement the direction of the curve forward higher 
frequencies allow us to comment that higher 
components have appeared in the signals. However no 
details about number of the components and its energy 
participation can be described. Very interesting effect 
brings normalization process of first order local 
frequency moment of WD by instantaneous power of 
the signal which leads directly to derivative of the 
phase. In case of real signals it allows to determine 
moments when signal obtains zero value (Fig.3). 

B. Transient state in RLC branch 

t = 0

R L C

i(t)
 

 
( ) 230 2 sin( 90 )

4 ,  0.1H,  C=10 F

LR<2 ,  90
C

o

o
e

e t t V
R L

ω
µ

ϕ ψ

= −
= Ω =

⇒ ≈ = −

Fig. 1. Example B – analyzed circuit and its parameters. 

From analysis of above circuits we can describe signal 
i(t) as: 

( ) ( ) ( ) ( )20230 2 1000sin 100 sin 1000 1
287 100

ti t t e t tπ
π

−⎛ ⎞−⎜ ⎟
⎝ ⎠

 (12) 
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Fig. 2. Example A – sum of cosine functions (a), its Wigner-Ville 
distribution (b) and normalized local frequency moment smoothed 
with median filter (c). 
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Fig. 3. Normalized local frequency moment of Wigner Distribution 
as a detector of zero-values of the signal from Example A. 
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Fig. 4. Example B – current signal in RLC branch under transient 
conditions (a), its Wigner-Ville distribution (b) and normalized local 
frequency moment smoothed with median filter (c). 

Waveform of signal i(t) and its Wigner-Ville 
distribution was illustrated in Fig. 4a-4b. Transient 
state manifest itself in existing the transient 
component about 160Hz and input component 50Hz. 
Observing Fig. 4c we can recognize shifting the 

position of central point of the instantaneous spectrum 
forwards input components as a results of decaying 
transient component. The duration time of the 
transient state can be also clearly characterized. 
Similarly as in Example A detailed information about 
the frequency or amplitude of the transient component 
is hidden. 

IV. CONCLUSIONS  
It has been shown that the non-parametric time-

frequency representation such as Wigner and Wigner-
Ville distributions, can be used for parameter 
estimation of distorted, non-stationary signals. 
Discussed methods are computationally complex and 
very often obscured by the cross-terms influences, but 
improving frequency concentration effect is achieved 
in comparison to Fourier algorithm.  

Two-dimensional effect of the methods, however 
very valuable when the kind of nonstationarity is 
described, can be inconvenient in point of practical 
using. Therefore further investigations include 
calculation of local frequency moment which are one-
dimensional function of time. Normalized first order 
local frequency moment of WD leads directly to 
derivative of the phase and in case of real signals 
allows to determine moments when signal obtains zero 
value. Normalized first order local frequency moment 
of WVD illustrates how the centre point of spectrum 
changes in time. Although following that 
interpretation all details about the frequency 
components and its energy participation is lost, 
information about the time parameters of 
nonstationarity is clearly preserved. It gives idea of 
applying the discussed approach for detection and 
classification.  
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