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 Abstract — This paper present a deterministic 
algorithm for motion estimation in medical image 
sequences. We are describing the Iterated Conditional 
Modes (ICM) adapted to solve the motion estimation 
problem in NMR image sequences. The proposed 
algorithm ensures a satisfying trade-off between 
precision and computational time or, in other words, 
ensure a good efficiency, comparing with the stochastic 
algorithms. 

The results are compared in term of precision and of 
computational time with some basic algorithms like the 
basic block-matching algorithm or the Horn & Schunck 
algorithm. The results are illustrated in the case of 
synthetic images (obtained using the Free Form 
Deformation principle) as well as real NMR medical 
image sequences.  

I.  INTRODUCTION 
HE motion estimation in medical image 
sequences represents an open problem in medical 
imaging. This task is very important for the 

diagnosis of the moving organs in human body and 
especially to diagnosis the heart diseases. The most 
precise solution for motion estimation consist in using 
stochastic algorithms, in order to minimize an a 
posteriori energy, that include some a priori 
knowledge concerning the motion of the studied 
objects. These algorithms ensure the optimal solution 
but with a very high computational cost [7]. 

This is the reason why in practice we are using 
deterministic algorithms, in order to obtain a smaller 
computational time. 

II.  OVERVIEW ON MOTION ESTIMATION 
METHODS  

The motion estimation methods could be classified 
as follows [13], [20]: 
• differential methods; 
• matching methods; 
• stochastic methods. 

The hypothesis that is made in all these methods is 
the preservation of the intensity of the pixels along the 
motion trajectory. This hypothesis could be expressed 
by the Displaced Frame Difference (DFD) equation 
[5], [10]: 

 ))(()()( 1 pdppp −−= −tt IIDFD  (1) 

where p=(x,y) is a pixel of the image, It and It-1 are 
the images at t and t-1 instants and d(p)=( dx(p), dy(p)) 
is the displacement of the pixel p. This equation could 
be rewrite using the Taylor development [9]: 
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where vx and vy are the components of the velocity 
on x and y direction of the pixel p. This equation is 
also known as Optical Flow Equation (OFE). 

The performances of a motion estimation method 
[1], [2] depends on the properties of the images in the 
sequence, these properties depending themselves on 
the physical nature of the information that is 
represented in these images. The physical nature of the 
information depends on the acquisition method: 
ultrasounds (US), X rays or nuclear magnetic 
resonance (NMR). 

The classical deterministic methods (differential and 
matching methods) are easy to be implemented but are 
not always sufficient precise [11], [19]. In addition, 
the motion estimation problem is an ill-posed problem: 
in order to obtain a unique and stable solution, we 
have to introduce some constraints [1]. The most 
precise solution for motion estimation consist in using 
stochastic algorithms, in order to minimize an a 
posteriori energy, that can include some a priori 
knowledge concerning the motion of the studied 
objects (for example the continuity of the 
displacement inside of the objects and the 
discontinuity at the objects frontiers) [3], [14]. These 
algorithms ensure the optimal solution but with a very 
high computational cost. The stochastic character of 
these methods is given by the minimization method 
that is used to minimize the a posteriori energy. 
Among these methods we can mention the simulated 
annealing. As an alternative of these stochastic 
minimization methods we can use deterministic 
methods [7], [16]. 

III.  THE PROBABILISTIC APPROACH OF 
MOTION ESTIMATION 

The probabilistic problem of motion estimation is 
the following: having the It and the It-1 images, it has 
to determine the best estimation of the displacement 
field d̂  that maximize the probability: p(d | It ,It-1).  
This is the reason why this method is also known as 
Maximum A Posteriori (MAP) method. Using the 
Bayes formula and the Hammersley-Clifford theorem 
[7], [8], this formulation of the probabilistic motion 
estimation could be reformulated as finding the best 
estimation of the displacement field d̂  that minimize 
the energy: 
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 where α is a weighting coefficient between the two 
terms, U(It|d,It-1) is the term attached to the data 
(observed images) and U(d|It-1) is the regularization 
term that express the a priori knowledge concerning 
the displacement field, as the continuity of the 
displacement inside of the objects and the 
discontinuity at the objects frontiers. 
 The regularization term could be view as a 
constraint that transforms the ill-posed motion 
estimation problem in a well-posed problem. 
 Supposing that the motion in the sequence is due 
only to the motion or to the noise, and supposing a 
white gaussian noise, with a zero mean and a σ 

standard deviation, we can use the following energy 
attached to the data [10]: 
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 where S is the support of the image. 
 Another energy that could be used as energy 
attached to the data is [21]: 
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 As a regularization term of the displacement field in 
(3) we can use the following energy: 
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 where c is a pair (clique) of pixels in the 
neighborhood (on the displacement field) of the 
current pixel, Cd represents the ensemble of all the 
pairs that could be defined on the neighborhood of the 
current pixel and (.)c

dV  is the potential of the pair c 
defined on the displacement field d. An example of a 
potential of a clique of the second order (pair of 2 
pixels) is [3]: 

 2)()())(),((2 rdpdrdpd −=c
dV  (7) 

 where p and r are the pixels of the clique c2 and ║.║ 
is the Euclidian norm. For this example, a spatial 
configuration of the motion field with a high potential 
will have a low a priori probability. 
 Thus, in the probabilistic motion estimation we 
have to minimize the MAP energy described in (3): 

 ( ) ( )11, −− ⋅+= ttt IUIIU dd  U MAP α  (8) 

IV. THE ICM ALGORITHM FOR MOTION ESTIMATION 
The minimization of the MAP energy is complex 
because this energy is usually non-convex and thus, it 
admits local minima. 

The minimization algorithms could be classified in: 
• stochastic algorithms; 
• deterministic algorithms. 

Among the stochastic algorithms a very used 
algorithm is the simulated annealing (Monte-Carlo 
type) algorithm [7] and the genetic algorithm. These 
algorithms ensure the optimal solution of the MAP 
energy but with a very high computational cost [[15]]. 

The deterministic algorithms are fasters but they 
present the disadvantage that they could remain 
“hanged” in a local minima. Among the deterministic 
algorithms the most used algorithms are [20], [22]: 
• iterated conditional modes (ICM); 
• gradual non-convexity (GNC); 
• mean field annealing (MFA). 

We will describe the ICM algorithm that is a very 
used algorithm in many image processing applications. 
In the following, we will present an application of this 
algorithm in the case of motion estimation. 

The general principle of the ICM algorithm could be 
resumed as in the diagram (9). 
 
 
 
 
 
                      (9) 
 
 
 
 
 
 
 In the case of the ICM algorithm for motion 
estimation, starting from an initialization I(0) of the 
motion field we are scanning cyclically all the pixels p 
of the image I, according to a scanning strategy.  each 
iteration, we are modifying only the displacement 
corresponding to one pixel and it is minimized the 
energy: 

 ( ))(|)( )()( rp kkMAP IIU  (10) 

 that corresponds to the probability of the realization 
of a certain value of the displacement corresponding to 
the pixel p, conditioned by the realization of a certain 
configuration of the displacements of the pixels r in a 
neighborhood of the pixel p. In the iterative process 
the value of the displacement of each pixel is scanning 
the entire range of the possible values. It can be shown 
that at each iteration the corresponding energy (10) 
decrease. Thus, weighting a good initialization we can 
obtain a good estimation. 
 The ICM algorithm converges quicker than 
stochastic algorithms, but it converge to a local 
minima because it doesn’t accept negative variations 
of the MAP energy. A problem of the ICM algorithm 
is to choose a good estimation. 
 If the number of possible values is small, as it is the 
maximum displacement in the case of motion 
estimation, the ICM algorithm converges very quickly 
(1…5 iterations) [16]. 
 Comparing with differential methods and matching 
methods, the probabilistic motion estimation methods 
allow us to take into account the discontinuities of the 

1. Initialization I(0) ; 
2. Calculate I(k+1) starting from I(k) : 

(a) scanning all the pixels p (according 
to a scan strategy): 

   ( ))(|)(minarg)( )()()1( rpp
d
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k=k+1; 
       (b) Jump in (a) until a stopping criteria.  
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motion field, in order to increase the precision of the 
estimation. 

V. RESULTS  
 We will present some comparative results, in terms 
of precision and computational time, between the 
Horn & Schunck (HS) method, the exhaustive block-
matching (BM) method and the MAP method, using 
the ICM as a minimization algorithm. 

In figure 1, the results in the case of a reference 
sequence in motion estimation (Rubic Cube sequence) 
are presented. 
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Figure 1.  Results in the case of Rubic Cube sequence. 

 In figure 1 (a) the first image of the Rubic Cube 
sequence is presented. In figure 1 (b) the estimated 
motion field is illustrated. The motion field was 
estimated using the MAP method, with ICM. 
 In table 1, the comparative numerical results are 
presented, for HS, BM and MAP method. 

TABLE 1. COMPARATIVE RESULTS FOR RUBIC CUBE SEQUENCE. 

Estimation method Mean Value Standard 
Deviation 

HS -0.74 3.32 

BM -1.02 11.86 

MAP 0.01 2.39 
 
 In figure 2 the results in the case of a synthetic 
sequence (FFD) is presented. This sequence was 
obtained using the Free Form Deformation (FFD) 
principle [17] and is simulating a breath movement of 
a thorax. 
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Figure 2. Results in the case of FFD sequence. 

In figure 2 (a) the first image of the synthetic 
sequence (FFD) is presented. In figure 2 (b) the 
estimated motion field is illustrated. The motion field 
was estimated using the MAP method, with ICM. 
 In table 2, the comparative numerical results are 
presented, for HS, BM and MAP method. 
 
 
 

TABLE 2. COMPARATIVE RESULTS FOR FFD SEQUENCE. 

Estimation method Mean Value Standard 
Deviation 

HS 0.19 1.33 

BM 1.06 4.97 

MAP 0.11 1.20 

 In figure 3, the results in the case of a real sequence 
(IRM) are presented. This sequence is obtained using 
a NMR imaging method of a human heart. 
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Figure 3. Results in the case of IRM sequence. 

In figure 3 (a) the first image of the real sequence 
(IRM) is presented. In figure 3 (b) the estimated 
motion field is illustrated. The motion field was 
estimated using the MAP method, with ICM. 
 In table 3, the comparative numerical results are 
presented, for HS, BM and MAP method. 

TABLE 3. COMPARATIVE RESULTS FOR IRM SEQUENCE. 

Estimation method Mean Value Standard 
Deviation 

HS -0.14 1.17 

BM 0.122 4.17 

MAP -0.11 1.05 

 
 As we can observe from the presented results, the 
most precise results are obtained for the MAP 
estimation method. In this method we have used as 
energy attached to the data, the energy that was 
described in equation (5) and as energy of 
displacement regularization we have used the energy 
described in (6) and (7). But using this method, with 
the described energies, we will impose a uniform 
regularization of the displacement field in the entire 
image, without taking into account the discontinuities 
in the displacement field, that usually corresponds to 
the gray-level discontinuities.  
 In terms of computational time, the MAP method 
with ICM gives us a still high computational time, as it 
can be observed in table 4 [8]. 

TABLE 4. COMPARATIVE COMPUTATIONAL TIME. 

 HS BM ICM 

Computational 
time [s] 0.7 1.36 27.52 

 
 Even the MAP+ICM computational time is smaller 
that a stochastic algorithm (minutes or hours), it is still 
high comparing with classical algorithms (HS and 
BM). In addition, the use of the energy attached to the 
data (5) not allows us to estimate great displacement, 
because of the well known problem of the differential 
methods: the approximation of the partial derivates as 
finite differences, in a small neighborhood. In order to 
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decrease the computational time and to can estimate 
bigger displacements, we can use a multi-resolution 
approach [15]. In order to increase the precision, we 
can use a MAP method but introducing some a priori 
knowledge, for example introducing the 
discontinuities of the displacement field [14]. In order 
to decrease the computational time, we can implement 
this method or some parts of it on dedicated hardware 
structure as, for example, the Cellular Neural 
Networks (CNN) [4]. 

VI. CONCLUSIONS 
We have presented the MAP method adapted for 

motion estimation method, using as minimization 
method the ICM algorithm that allows us to introduce 
some a priori knowledge. The results is satisfying in 
terms of precision, but in terms of computational time, 
even if it give us a smaller computational time then the 
stochastic algorithms, it still have a great 
computational time, comparing with classical motion 
estimation methods (HS and BM).  

It remains as a future work, to implement the multi-
resolution version of the MAP+ICM algorithm, in 
order to decrease the computational time and to can 
estimate bigger displacements. In order to increase the 
precision, we will develop the MAP method 
introducing some a priori knowledge, namely the 
discontinuities of the displacement field. We will also 
try to implement this method or some parts of it on a 
dedicated parallel hardware as the Cellular Neural 
Networks (CNN) [12], [18], in order to decrease the 
computational time. 
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