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 Abstract —Supernodal technique, used in the field of 
sparse linear equation solvers, introduces dense kernel 
for speeding-up the computations. SuperLU solver is the 
most sophisticated and efficient example of this 
technique. The research reported here shows that 
supernodal solver is really fast, but this spectacular 
speed is obtained through abandoning of numerical 
stability. It has been shown that SuperLU solver fails in 
whole class of practical real-world problems. An attempt 
to characterize and diagnose this problems in terms of 
matrix parameters has been made. Pointer solver, being 
stable numerically and fairly fast alternative for 
supernodal solver is presented quite comprehensively. 

I. INTRODUCTION 

The algorithms and the software for sparse matrices 
processing make extensive use of matrices sparsity. It 
may be observed, on most general level, that in the 
sparse approach only the nonzeros are stored, together 
with diversified information on location of these 
nonzeros. Such approach reduces spectacularly the 
consumption of memory. However processing of the 
nonzeros is accompanied by the overhead of locating 
currently used items and by the overhead of fill-in. 
The last phenomenon results from popping-up of 
nonzeros in some previously unoccupied places, for 
example as a consequence of computing LU 
decomposition of the matrix. 

The overhead of sparse structure processing may be 
quite significant. It offsets (luckily only partially) the 
benefits of reduced memory consumption. These 
considerations have led to the idea of hybrid approach, 
i.e. mixing of sparse and dense approach. In dense 
matrix algorithms the processed elements are picked in 
some precisely defined (usually serial) order and no 
fill-in occurs due to matrix density. 

II. UNSYMMETRIC SUPERNODAL SOLVER 
It is believed that most successful introduction of 

dense kernel technique has been achieved in 
supernodal unsymmetric solver with partial pivoting 
[1]. Basic idea of a supernode consists in grouping 
together the matrix columns with the same nonzero 
structure and dense region around main diagonal. Four 
types of supernodes with slightly different dense 
region and different row structures have been defined 
by the authors of supernodal unsymmetric solver. Two 
types of supernodes are shown in fig. 1 
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Fig. 1. Two types of supernodes. Solid black area - dense region, 
vertical lines - columns with the same nonzero structure. 

Introduction of supernodes offers several quite 
obvious benefits: 

1) Due to identical sparsity pattern in a set of 
columns no fill-in occurs there. 

2) Dense region around main diagonal may be 
processed with the aid of dense numerical kernel. 

3) No fill-in occurs in the supernodes with identical 
row sparsity pattern (not shown in fig. 1). 

All these factors speed-up processing of the matrix. 
Detection, forming and processing of unsymmetric 
supernodes have been analyzed comprehensively by 
the authors of this idea in excellent paper on 
supernodal solver SuperLU with partial pivoting [1]. 
Extensive numerical experiments have proved, 
according to method’s authors, the superior per-
formance of supernodal solver. The tests of this solver 
have been performed on large set of diversified sparse 
matrices. Two parameters characterizing unsymmetric 
sparse matrices have been introduced: 

• StrSym is the fraction of nonzeros matched by 
nonzeros in symmetric locations. 

• NumSym is the fraction of nonzeros matched by 
equal values in symmetric locations. 

For the test set of the matrices [1, 8] the StrSym and 
NumSym parameters ranged from approximately 1.0 
down to almost 0.0. Matrix dimensions reached 80000 
and the areas of application encompassed circuit 
simulation, economics, chemical engineering and 
many others. SuperLU solver performance has been in 
most cases distinctly better (time, memory 
requirements) than older multifrontal UMFPACK 
solver [1]. 

However this fine and sophisticated piece of 
software seems to be undertested, despite large matrix 
collection engaged in the tests. Table I presents the 
results of the tests performed with the set of 
unsymmetric matrices provided by Friedrich Grund 
from Bayer AG [8]. These matrices are available, 
among others, from University of Florida collection. 
SuperLU solver code, for the purposes of current 
research, has been downloaded from NIST repository 
of the open source software. 

TABLE I. 
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RESULTS OF  SAMPLE UNSYMMETRIC SPARSE MATRICES PROCESSING 
BY SUPERLU SOLVER; ERROR INFO = NUMBER OF THE STEP, WHERE 

THE SOLVER FAILED 

 
matrix 
name 

 
dimen-

sion 

 
StructSym 

 
NumSym 

error 
info 

uncom-
press. 

error 
info 
com-

pressed

Gru30 3268 0.0068 0.0011 1043 896 

Gru31 3008 0.0068 0.0011 1 1 

Gru32 3268 0.0068 0.0011 1043 896 

Gru33 3008 0.0068 0.0011 1 1 

Gru34 3083 0.0213 0.0106 1 2 

Gru35 13436 0.0026 0.0002 1 6 

LHR01 1477 0.0087 0.0013 OK OK 

LHR02 2954 0.0087 0.0013 OK OK 

LHR04 4101 0.0162 0.0011 OK OK 

LHR71 70304 0.0016 0.0001 OK OK 

ORANI678 2529 0.0729 0.0024 OK OK 

MAHINDAS 1258 0.0302 0.0138 OK OK 

WEST2021 2021 0.0039 0.0007 OK OK 

VAVASIS3 41092 0.0010 0.0000 OK OK 

PSMIGR1 3140 0.4817 0.0162 OK OK 
 
No test matrix from Bayer collection used in current 

research (table I) has been successfully decomposed. 
SuperLU solver failed in assorted stages of LU 
decomposition. Matrix compression option included in 
SuperLU solver (compression idea by Mayoh [3]) has 
been tried but without success. The SuperLU solver 
failed in several cases in other stages of LU 
decomposition. 

One may be tempted to infer that Bayer matrices are 
singular. However other, more classical, solvers (e.g. 
[6]) decompose these matrices without any problems. 

Two problems/questions arise. First of all it may be 
interesting to devise a method for quick problem 
diagnosis – is the matrix decomposable with SuperLU 
solver or not. Next – what are the reasons for SuperLU 
failure in some cases; is it coding error or some 
deficiency of the supernodal method. 

III. STRUCTURAL CHARACTERICTICS OF SPARSE 
MATRICES 

In order to get some insight into the difference 
between the Bayer matrices and other ones lets have a 
look at nonzero patterns. Figure 2 presents the 
structure of Gru30 matrix. Figure 3 shows the 
structure of LHR01 matrix used in original SuperLU 
tests. Both matrices are quite large (dimension from 
1500 to approximately 3000) and therefore finer 
details of nonzero structure are missing in these 
figures. 

 

 
Fig. 2. Sparsity pattern of Gru30 matrix; nonzeros are located around 
the diagonal perpendicular to the main one. 

Despite these limitations, it is evident that these 
structures are completely different. The nonzeros of 
Gru30 matrix are scattered in distinctly larger 
distances from main diagonal than the nonzeros of 
LHR01 matrix. Nonzeros of LHR01 are coarsely 
ordered along main diagonal, whereas in Gru30 they 
are located rather perpendicularly to main diagonal. 

 

 
Fig. 3. Sparsity pattern of LHR01 matrix; nonzeros located roughly 
around or quite close to main diagonal 

These qualitative observations may be supple-
mented with quantitative sparse matrix parameters. 
Two characteristic parameters have been introduced 
by the authors and developers of SuperLU package 
[1]. The definitions of StrSym and NumSym have been 
quoted earlier in this paper. However these parameters 
are the same or almost the same for the matrices 
decomposable and not decomposable by SuperLU 
solver.  

Following two characteristic parameters seem to be 
adequate for describing the differences between Gruxx 
matrix series and other test matrices. The first one is 
the mean relative distance between nonzeros and main 
diagonal (standard diagonal distance), defined as: 

 ( ) nz

n

i

n

a
j

n nnijd

ij
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−= ∑ ∑

=
≠

=1
0

1

 (1) 



VI International Workshop “Computational Problems of Electrical Engineering”                                                                        Zakopane 2004 

 171

It follows from this equation that the distance is 
referenced to matrix dimension and that it is measured 
horizontally. 

Second parameter may be called orthogonal or 
perpendicular mean distance. It is measured between 
nonzeros and the diagonal perpendicular (orthogonal 
diagonal distance) to the main one: 
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The last two parameters, along with StructSym and 
NumSym, for selected set of matrices are shown in 
table II. 

TABLE II. 

CHARACTERISTIC PARAMETERS OF THE TEST SET OF MATRICES 

 
matrix name 

 
dimen 
sion 

 
Struct-

Sym 

 
Num-
Sym 

relative
distance

dn 

relative
ortho. 

distance
do 

Gru30 3268 0.0068 0.0011 0.531 0.166

Gru31 3008 0.0068 0.0011 0.575 0.139

Gru32 3268 0.0068 0.0011 0.531 0.166

Gru33 3008 0.0068 0.0011 0.575 0.139

Gru34 3083 0.0213 0.0106 0.346 0.112

Gru35 13436 0.0026 0.0002 0.395 0.142

LHR01 1477 0.0087 0.0013 0.142 0.342

LHR02 2954 0.0087 0.0013 0.071 0.500

LHR04 4101 0.0162 0.0011 0.152 0.325

LHR71 70304 0.0016 0.0001 0.041 0.408

ORANI678 2529 0.0729 0.0024 0.175 0.500

MAHINDAS 1258 0.0302 0.0138 0.374 0.280

WEST2021 2021 0.0039 0.0007 0.216 0.421

VAVASIS3 41092 0.0010 0.0000 0.182 0.380

PSMIGR1 3140 0.4817 0.0162 0.279 0.375
 
It can be easily observed that relative distance para-

meters clearly divide the test set of matrices into two 
groups. The first group is composed of Gruxx series of 
matrices. It is characterized by relatively high value of 
standard diagonal distance (typically above 0.5) and 
low value of orthogonal diagonal distance (below 0.2). 
The reverse is true for the rest of matrices – low 
standard diagonal distance and high orthogonal di-
stance. Computation of standard and orthogonal 
diagonal distance is inexpensive in the sense of timing. 
It seems to be an usable auxiliary tool for 
classification of matrices into the set decomposable or 
not decomposable with the aid of SuperLU. Final 
judgement must rely on an attempt to perform LU 
decomposition. 

IV. ALTERNATIVE SPARSE SOLVER WITH ENHANCED 
NUMERICAL STABILITY 

Two solvers have been developed in the course of 
current research, as more stable alternatives for 
SuperLU solver. Both solvers implement “array of 
pointers” idea [2, 6]. First one has been developed in 
object oriented style using C++ language (GNU 
compiler package). Second solver is structural 
counterpart of the first one. It has been developed 
through some sort of downgrading C++ pointer solver 
to C language. This solver version has been used for 
comparing numerical and code generating efficiency 
of C++ compiler vs. C compiler [7]. 

Several thorough improvements in basic version of 
pointer solver [6] have been introduced in the course 
of current research. First of all, during LU decompo-
sition, L matrix is generated as a separate entity. In 
order to speed-up access to its elements it is ordered 
columnwise. Second set of improvements is related to 
matrix U. This matrix replaces original rowwise 
matrix A. The rows of matrix U (despite fill-in) 
become shorter in the course of forward elimination. 
In single elimination step at first a product of pivot 
row and element of already assembled column of 
matrix L is computed. Next the memory allocated to 
current A matrix row is released and the pointer to this 
memory is assigned to this temporary structure. Thus 
row contents shifting is replaced by much faster 
dynamic memory allocation and deallocation. 

Row swapping during pivoting is handled locally in 
pointer solver. In this case simple interchange of 
pointer nodes contents is sufficient. 

V. COMPARISON OF SUPERNODAL AND POINTER 
SOLVER 

Three solvers have been tested: 
- supernodal solver SuperLU [1] available as open 

source software in C language; 
- pointer solver developed in C++ language; 
- pointer solver almost identical (algorithms) with 

the previous one, but downgraded to C language; 
The tests have been performed on Linux RedHat 7.1 

platform running on Pentium 800 MHz. The software 
has been compiled with the aid of C/C++ GNU com-
piler package. Both original uncompressed matrices 
and compressed versions (Mayoh’s transposed matrix 
sum [3] and RCM method) have been used. In the case 
of SuperLU solver compression is available and 
consequently has been used in these tests. 

One of most interesting factors in assessment of 
solver performance and usability is the computation 
time. Table III shows LU decomposition times for 
uncompressed matrices. SuperLU solver would be 
clear winner if “Gruxx” set of matrices have been 
excluded from test data. Supernodal solver out-
performs pointer solver introduced here by the factor 
of 7 to 8 with respect to processing time. However in 
the case of “Gruxx” matrices SuperLU solver fails to 
finish correctly the LU decomposition. 
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TABLE III 

LU DECOMPOSITION TIME (SEC) FOR UNCOMPRESSED MATRICES; 
PENTIUM 800 MHZ, LINUX REDHAT 7.1 OPERATING SYSTEM, GNU 

C/C++ COMPILER 
 No. of 

equa-
tions 

No. of 
non-
zeros 

Pointer 
solver 
C++  

Pointer 
solver 

C  

SuperL
U solver

WATT1 1856 11360 1 1 1

WATT2 1856 11550 1 1 1

Gru30 3268 27836 15 16 error

Gru31 3008 27576 3 3 error

Gru32 3268 27836 15 15 error

Gru33 3008 27576 4 4 error

Gru34 3083 21216 1 1 error

Gru35 13436 94926 12 11 error

LHR01 1477 18592 8 8 1

LHR02 2954 37206 16 16 1

LHR04C 4101 82682 290 288 32

LHR07C 7337 156508 1763 1779 245
 
The situation in the case of preliminary matrix 

compression (table IV) changes in some aspects. As in 
the case of uncompressed matrices SuperLU solver is 
the fastest one, if the LU decomposition is feasible. 
Also “Gruxx” matrices cannot be decomposed with 
the aid of this solver. Matrix compression reduces 
processsing time of all solvers in the case of “LHRxx” 
matrix series with reduction factor above 20 in some 
cases. For “Gruxx” matrix series, compression 
influence is surprisingly reversed. Sometimes very 
prominent processing time expansion is observed. 

TABLE IV 

LU DECOMPOSITION TIME (SEC) FOR COMPRESSED MATRICES; 
PENTIUM 800 MHZ, LINUX REDHAT 7.1 OPERATING SYSTEM, GNU 

C/C++ COMPILER 
 No. of 

equa-
tions 

No. of 
non-
zeros 

Pointer 
solver 
C++  

Pointer 
solver 

C  

SuperL
U 

solver 

WATT1 1856 11360 1 1 1

WATT2 1856 11550 1 1 1

Gru30 3268 27836 30 32 error

Gru31 3008 27576 22 24 error

Gru32 3268 27836 30 32 error

Gru33 3008 27576 23 24 error

Gru34 3083 21216 5 5 error

Gru35 13436 94926 269 273 error

LHR01 1477 18592 2 2 1

LHR02 2954 37206 10 9 1

LHR04C 4101 82682 26 24 7

LHR07C 7337 156508 80 82 23
 
In the case of bandwidth compressed matrices 

pointer solver is slower by the factor of 3 to 10 (lower 
values correspond to larger matrices or compressed 

ones) than SuperLU solver. However it seems to be a 
justified price for reliability and meaningful results. 

After this semi-quantitative analysis it is rather easy 
to explain the failure of SuperLU solver in the case of 
“Gruxx” series. For matrices of this type very 
extensive pivoting is necessary. SuperLU solver has 
traded numerical stability (equivalent to extensive 
pivoting) for speed. 

VI. CONCLUSIONS 
Main purpose of this paper consists in pointing out 

the limitations of supernodal approach to partial 
pivoting in sparse unsymmetric matrices. The 
SuperLU package, implementing this method should 
be used with some caution. 

New pointer-type sparse solver, using object 
oriented programming technique, has proved its 
usefulness in the field of large unsymmetric linear 
equation systems. It features better numerical stability 
than competitive supernodal solver at the expense of 
acceptably longer processing time. Tests of C++ and C 
language versions have shown no practical differences 
in performance. Introduction of C++ language enables 
compacting source code to single version (in contrast 
to single precision, double precision and complex 
versions in C solvers) due to template facility of the 
language [4, 5]. 

Two new parameters have been introduced for 
classification of sparse matrices – standard mean 
diagonal distance of nonzeros and new parameter – 
mean orthogonal diagonal distance. Applied jointly 
they help to detect numerical difficulties and eventual 
problems with less robust solvers. 
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