
VI International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

 169

 Abstract —Supernodal technique, used in the field of
sparse linear equation solvers, introduces dense kernel
for speeding-up the computations. SuperLU solver is the
most sophisticated and efficient example of this
technique. The research reported here shows that
supernodal solver is really fast, but this spectacular
speed is obtained through abandoning of numerical
stability. It has been shown that SuperLU solver fails in
whole class of practical real-world problems. An attempt
to characterize and diagnose this problems in terms of
matrix parameters has been made. Pointer solver, being
stable numerically and fairly fast alternative for
supernodal solver is presented quite comprehensively.

I. INTRODUCTION

The algorithms and the software for sparse matrices
processing make extensive use of matrices sparsity. It
may be observed, on most general level, that in the
sparse approach only the nonzeros are stored, together
with diversified information on location of these
nonzeros. Such approach reduces spectacularly the
consumption of memory. However processing of the
nonzeros is accompanied by the overhead of locating
currently used items and by the overhead of fill-in.
The last phenomenon results from popping-up of
nonzeros in some previously unoccupied places, for
example as a consequence of computing LU
decomposition of the matrix.

The overhead of sparse structure processing may be
quite significant. It offsets (luckily only partially) the
benefits of reduced memory consumption. These
considerations have led to the idea of hybrid approach,
i.e. mixing of sparse and dense approach. In dense
matrix algorithms the processed elements are picked in
some precisely defined (usually serial) order and no
fill-in occurs due to matrix density.

II. UNSYMMETRIC SUPERNODAL SOLVER
It is believed that most successful introduction of

dense kernel technique has been achieved in
supernodal unsymmetric solver with partial pivoting
[1]. Basic idea of a supernode consists in grouping
together the matrix columns with the same nonzero
structure and dense region around main diagonal. Four
types of supernodes with slightly different dense
region and different row structures have been defined
by the authors of supernodal unsymmetric solver. Two
types of supernodes are shown in fig. 1

Author is with the Institute of Computer Science, Lublin

University of Technology, ul. Nadbystrzycka 36B, 20-618 Lublin,
Poland, e-mail: mmst@bravo.pol.lublin.pl

T2 T3
Fig. 1. Two types of supernodes. Solid black area - dense region,
vertical lines - columns with the same nonzero structure.

Introduction of supernodes offers several quite
obvious benefits:

1) Due to identical sparsity pattern in a set of
columns no fill-in occurs there.

2) Dense region around main diagonal may be
processed with the aid of dense numerical kernel.

3) No fill-in occurs in the supernodes with identical
row sparsity pattern (not shown in fig. 1).

All these factors speed-up processing of the matrix.
Detection, forming and processing of unsymmetric
supernodes have been analyzed comprehensively by
the authors of this idea in excellent paper on
supernodal solver SuperLU with partial pivoting [1].
Extensive numerical experiments have proved,
according to method’s authors, the superior per-
formance of supernodal solver. The tests of this solver
have been performed on large set of diversified sparse
matrices. Two parameters characterizing unsymmetric
sparse matrices have been introduced:

• StrSym is the fraction of nonzeros matched by
nonzeros in symmetric locations.

• NumSym is the fraction of nonzeros matched by
equal values in symmetric locations.

For the test set of the matrices [1, 8] the StrSym and
NumSym parameters ranged from approximately 1.0
down to almost 0.0. Matrix dimensions reached 80000
and the areas of application encompassed circuit
simulation, economics, chemical engineering and
many others. SuperLU solver performance has been in
most cases distinctly better (time, memory
requirements) than older multifrontal UMFPACK
solver [1].

However this fine and sophisticated piece of
software seems to be undertested, despite large matrix
collection engaged in the tests. Table I presents the
results of the tests performed with the set of
unsymmetric matrices provided by Friedrich Grund
from Bayer AG [8]. These matrices are available,
among others, from University of Florida collection.
SuperLU solver code, for the purposes of current
research, has been downloaded from NIST repository
of the open source software.

TABLE I.

Marek Stabrowski

Supernodal Sparse Linear Equations Solver –
Limitations and Alternatives

VI International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

 170

RESULTS OF SAMPLE UNSYMMETRIC SPARSE MATRICES PROCESSING
BY SUPERLU SOLVER; ERROR INFO = NUMBER OF THE STEP, WHERE

THE SOLVER FAILED

matrix
name

dimen-

sion

StructSym

NumSym

error
info

uncom-
press.

error
info
com-

pressed

Gru30 3268 0.0068 0.0011 1043 896

Gru31 3008 0.0068 0.0011 1 1

Gru32 3268 0.0068 0.0011 1043 896

Gru33 3008 0.0068 0.0011 1 1

Gru34 3083 0.0213 0.0106 1 2

Gru35 13436 0.0026 0.0002 1 6

LHR01 1477 0.0087 0.0013 OK OK

LHR02 2954 0.0087 0.0013 OK OK

LHR04 4101 0.0162 0.0011 OK OK

LHR71 70304 0.0016 0.0001 OK OK

ORANI678 2529 0.0729 0.0024 OK OK

MAHINDAS 1258 0.0302 0.0138 OK OK

WEST2021 2021 0.0039 0.0007 OK OK

VAVASIS3 41092 0.0010 0.0000 OK OK

PSMIGR1 3140 0.4817 0.0162 OK OK

No test matrix from Bayer collection used in current

research (table I) has been successfully decomposed.
SuperLU solver failed in assorted stages of LU
decomposition. Matrix compression option included in
SuperLU solver (compression idea by Mayoh [3]) has
been tried but without success. The SuperLU solver
failed in several cases in other stages of LU
decomposition.

One may be tempted to infer that Bayer matrices are
singular. However other, more classical, solvers (e.g.
[6]) decompose these matrices without any problems.

Two problems/questions arise. First of all it may be
interesting to devise a method for quick problem
diagnosis – is the matrix decomposable with SuperLU
solver or not. Next – what are the reasons for SuperLU
failure in some cases; is it coding error or some
deficiency of the supernodal method.

III. STRUCTURAL CHARACTERICTICS OF SPARSE
MATRICES

In order to get some insight into the difference
between the Bayer matrices and other ones lets have a
look at nonzero patterns. Figure 2 presents the
structure of Gru30 matrix. Figure 3 shows the
structure of LHR01 matrix used in original SuperLU
tests. Both matrices are quite large (dimension from
1500 to approximately 3000) and therefore finer
details of nonzero structure are missing in these
figures.

Fig. 2. Sparsity pattern of Gru30 matrix; nonzeros are located around
the diagonal perpendicular to the main one.

Despite these limitations, it is evident that these
structures are completely different. The nonzeros of
Gru30 matrix are scattered in distinctly larger
distances from main diagonal than the nonzeros of
LHR01 matrix. Nonzeros of LHR01 are coarsely
ordered along main diagonal, whereas in Gru30 they
are located rather perpendicularly to main diagonal.

Fig. 3. Sparsity pattern of LHR01 matrix; nonzeros located roughly
around or quite close to main diagonal

These qualitative observations may be supple-
mented with quantitative sparse matrix parameters.
Two characteristic parameters have been introduced
by the authors and developers of SuperLU package
[1]. The definitions of StrSym and NumSym have been
quoted earlier in this paper. However these parameters
are the same or almost the same for the matrices
decomposable and not decomposable by SuperLU
solver.

Following two characteristic parameters seem to be
adequate for describing the differences between Gruxx
matrix series and other test matrices. The first one is
the mean relative distance between nonzeros and main
diagonal (standard diagonal distance), defined as:

 () nz

n

i

n

a
j

n nnijd

ij
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−= ∑ ∑

=
≠

=1
0

1

 (1)

VI International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

 171

It follows from this equation that the distance is
referenced to matrix dimension and that it is measured
horizontally.

Second parameter may be called orthogonal or
perpendicular mean distance. It is measured between
nonzeros and the diagonal perpendicular (orthogonal
diagonal distance) to the main one:

 () nz

n

i

n

a
j

o nninjd

ij
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−= ∑ ∑

=
≠

=1
0

1

)((2)

The last two parameters, along with StructSym and
NumSym, for selected set of matrices are shown in
table II.

TABLE II.

CHARACTERISTIC PARAMETERS OF THE TEST SET OF MATRICES

matrix name

dimen
sion

Struct-

Sym

Num-
Sym

relative
distance

dn

relative
ortho.

distance
do

Gru30 3268 0.0068 0.0011 0.531 0.166

Gru31 3008 0.0068 0.0011 0.575 0.139

Gru32 3268 0.0068 0.0011 0.531 0.166

Gru33 3008 0.0068 0.0011 0.575 0.139

Gru34 3083 0.0213 0.0106 0.346 0.112

Gru35 13436 0.0026 0.0002 0.395 0.142

LHR01 1477 0.0087 0.0013 0.142 0.342

LHR02 2954 0.0087 0.0013 0.071 0.500

LHR04 4101 0.0162 0.0011 0.152 0.325

LHR71 70304 0.0016 0.0001 0.041 0.408

ORANI678 2529 0.0729 0.0024 0.175 0.500

MAHINDAS 1258 0.0302 0.0138 0.374 0.280

WEST2021 2021 0.0039 0.0007 0.216 0.421

VAVASIS3 41092 0.0010 0.0000 0.182 0.380

PSMIGR1 3140 0.4817 0.0162 0.279 0.375

It can be easily observed that relative distance para-

meters clearly divide the test set of matrices into two
groups. The first group is composed of Gruxx series of
matrices. It is characterized by relatively high value of
standard diagonal distance (typically above 0.5) and
low value of orthogonal diagonal distance (below 0.2).
The reverse is true for the rest of matrices – low
standard diagonal distance and high orthogonal di-
stance. Computation of standard and orthogonal
diagonal distance is inexpensive in the sense of timing.
It seems to be an usable auxiliary tool for
classification of matrices into the set decomposable or
not decomposable with the aid of SuperLU. Final
judgement must rely on an attempt to perform LU
decomposition.

IV. ALTERNATIVE SPARSE SOLVER WITH ENHANCED
NUMERICAL STABILITY

Two solvers have been developed in the course of
current research, as more stable alternatives for
SuperLU solver. Both solvers implement “array of
pointers” idea [2, 6]. First one has been developed in
object oriented style using C++ language (GNU
compiler package). Second solver is structural
counterpart of the first one. It has been developed
through some sort of downgrading C++ pointer solver
to C language. This solver version has been used for
comparing numerical and code generating efficiency
of C++ compiler vs. C compiler [7].

Several thorough improvements in basic version of
pointer solver [6] have been introduced in the course
of current research. First of all, during LU decompo-
sition, L matrix is generated as a separate entity. In
order to speed-up access to its elements it is ordered
columnwise. Second set of improvements is related to
matrix U. This matrix replaces original rowwise
matrix A. The rows of matrix U (despite fill-in)
become shorter in the course of forward elimination.
In single elimination step at first a product of pivot
row and element of already assembled column of
matrix L is computed. Next the memory allocated to
current A matrix row is released and the pointer to this
memory is assigned to this temporary structure. Thus
row contents shifting is replaced by much faster
dynamic memory allocation and deallocation.

Row swapping during pivoting is handled locally in
pointer solver. In this case simple interchange of
pointer nodes contents is sufficient.

V. COMPARISON OF SUPERNODAL AND POINTER
SOLVER

Three solvers have been tested:
- supernodal solver SuperLU [1] available as open

source software in C language;
- pointer solver developed in C++ language;
- pointer solver almost identical (algorithms) with

the previous one, but downgraded to C language;
The tests have been performed on Linux RedHat 7.1

platform running on Pentium 800 MHz. The software
has been compiled with the aid of C/C++ GNU com-
piler package. Both original uncompressed matrices
and compressed versions (Mayoh’s transposed matrix
sum [3] and RCM method) have been used. In the case
of SuperLU solver compression is available and
consequently has been used in these tests.

One of most interesting factors in assessment of
solver performance and usability is the computation
time. Table III shows LU decomposition times for
uncompressed matrices. SuperLU solver would be
clear winner if “Gruxx” set of matrices have been
excluded from test data. Supernodal solver out-
performs pointer solver introduced here by the factor
of 7 to 8 with respect to processing time. However in
the case of “Gruxx” matrices SuperLU solver fails to
finish correctly the LU decomposition.

VI International Workshop “Computational Problems of Electrical Engineering” Zakopane 2004

 172

TABLE III

LU DECOMPOSITION TIME (SEC) FOR UNCOMPRESSED MATRICES;
PENTIUM 800 MHZ, LINUX REDHAT 7.1 OPERATING SYSTEM, GNU

C/C++ COMPILER
 No. of

equa-
tions

No. of
non-
zeros

Pointer
solver
C++

Pointer
solver

C

SuperL
U solver

WATT1 1856 11360 1 1 1

WATT2 1856 11550 1 1 1

Gru30 3268 27836 15 16 error

Gru31 3008 27576 3 3 error

Gru32 3268 27836 15 15 error

Gru33 3008 27576 4 4 error

Gru34 3083 21216 1 1 error

Gru35 13436 94926 12 11 error

LHR01 1477 18592 8 8 1

LHR02 2954 37206 16 16 1

LHR04C 4101 82682 290 288 32

LHR07C 7337 156508 1763 1779 245

The situation in the case of preliminary matrix

compression (table IV) changes in some aspects. As in
the case of uncompressed matrices SuperLU solver is
the fastest one, if the LU decomposition is feasible.
Also “Gruxx” matrices cannot be decomposed with
the aid of this solver. Matrix compression reduces
processsing time of all solvers in the case of “LHRxx”
matrix series with reduction factor above 20 in some
cases. For “Gruxx” matrix series, compression
influence is surprisingly reversed. Sometimes very
prominent processing time expansion is observed.

TABLE IV

LU DECOMPOSITION TIME (SEC) FOR COMPRESSED MATRICES;
PENTIUM 800 MHZ, LINUX REDHAT 7.1 OPERATING SYSTEM, GNU

C/C++ COMPILER
 No. of

equa-
tions

No. of
non-
zeros

Pointer
solver
C++

Pointer
solver

C

SuperL
U

solver

WATT1 1856 11360 1 1 1

WATT2 1856 11550 1 1 1

Gru30 3268 27836 30 32 error

Gru31 3008 27576 22 24 error

Gru32 3268 27836 30 32 error

Gru33 3008 27576 23 24 error

Gru34 3083 21216 5 5 error

Gru35 13436 94926 269 273 error

LHR01 1477 18592 2 2 1

LHR02 2954 37206 10 9 1

LHR04C 4101 82682 26 24 7

LHR07C 7337 156508 80 82 23

In the case of bandwidth compressed matrices

pointer solver is slower by the factor of 3 to 10 (lower
values correspond to larger matrices or compressed

ones) than SuperLU solver. However it seems to be a
justified price for reliability and meaningful results.

After this semi-quantitative analysis it is rather easy
to explain the failure of SuperLU solver in the case of
“Gruxx” series. For matrices of this type very
extensive pivoting is necessary. SuperLU solver has
traded numerical stability (equivalent to extensive
pivoting) for speed.

VI. CONCLUSIONS
Main purpose of this paper consists in pointing out

the limitations of supernodal approach to partial
pivoting in sparse unsymmetric matrices. The
SuperLU package, implementing this method should
be used with some caution.

New pointer-type sparse solver, using object
oriented programming technique, has proved its
usefulness in the field of large unsymmetric linear
equation systems. It features better numerical stability
than competitive supernodal solver at the expense of
acceptably longer processing time. Tests of C++ and C
language versions have shown no practical differences
in performance. Introduction of C++ language enables
compacting source code to single version (in contrast
to single precision, double precision and complex
versions in C solvers) due to template facility of the
language [4, 5].

Two new parameters have been introduced for
classification of sparse matrices – standard mean
diagonal distance of nonzeros and new parameter –
mean orthogonal diagonal distance. Applied jointly
they help to detect numerical difficulties and eventual
problems with less robust solvers.

REFERENCES
[1] J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, J.W.H. Liu,

“A supernodal approach to sparse partial pivoting”, SIAM J.
Matrix Anal. Appl., vol. 20, No. 3, pp. 720-755.

[2] K.S. Kundert, „Sparse matrix techniques” in „Circuit Analysis,
Simulation and Design”, Albert Ruehli (editor), North Holland,
1986.

[3] B.H. Mayoh, „A graph technique for inverting certain
matrices”, Mathematics of Computation, vol. 19 (1965), pp.
644-646.

[4] S. Pandit, S. A. Soman, S. A. Khaparde, „Design of generic
direct sparse linear system solver in C++ for power system
analysis”, IEEE Transactions on Power Sysytems, vol. 16
(2001), iss. 4, pp. 647-652.

[5] J.G. Siek, „A Modern Framework for Portable High
Performance Numerical Linear Algebra”, Master Sc. Thesis,
Notre Dame University, Indiana 1999.

[6] M.M. Stabrowski, „Software and hardware optimization of
unsymmetrical sparse linear equation solvers”, Proceedings of
XII ISTET Conference , Warsaw 2003, vol. II, pp.159-162.

[7] T.L. Veldhuizen, M.E. Jernigan, „Will C++ be faster than
Fortran”, in “Scientific Computing in Object-Oriented Parallel
Environments”. ISCOPE, December 1997.

[8] S.E. Zitney, J.U. Mallya, T.A. Davis, M.A. Stadherr,
„Multifrontal vs frontal techniques for chemical process
simulation on supercomputers”, Computers in Chemical
Engineering, vol. 20 (1996), pp. 614-646.

