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Abstract— A practical application of informa-

tion theoretic criteria is presented in this paper.

Eigenvalue decomposition of the signal correlation

matrix–based AIC, MDL and MIBS criteria are in-

vestigated and used for on–line estimation of time–

varying parameters of harmonic signals in power sys-

tems.

I. Introduction

Determination of the model order arises in many
areas of signal processing. In this paper we will
focus on approaches based on eigenvalue decompo-
sition of the signal correlation matrix (time–delayed
in vector signal case). Wax and Kailath (1985) pre-
sented a new approach for estimating the number of
signals in multichannel time–series, based on statis-
tical classification criteria AIC (Akaike Information
Criterion) and MDL (Minimal Description Length
Criterion) [3]. Use of such statistical criteria re-
solves the problem of estimation of the signal and
subspace dimension, which is necessary to obtain
the correct estimates od the signal parameters, us-
ing the methods considered in this work [4]. New
criterion [5] based on Bayesian statistics will be also
investigated.

II. Estimation of the order of the model

A. Information theoretic criteria

Wax and Kailath [10] presented a new approach
for estimating the number of signals in multichannel
time–series, based on statistical classification crite-
ria AIC and MDL. This approach does not require
any subjective threshold setting.

B. Approach based on “observation”

The most common approach is to calculate the
eigenvalues of the correlation matrix R of the sig-
nal, denoted by:

λ1 ≥ λ2 ≥ . . . ≥ λp (1)

The set of the smallest eigenvalues with values equal
to the noise variance σ2 has the dimension p−q [10].
If the correlation matrix is exactly known, the num-
ber of signals q can be determined as the number
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of the smallest eigenvalues. However, the correla-
tion matrix, estimated from a finite sample size has
all different eigenvalues. In real–life problems, this
method is difficult and unreliable.

C. AIC and MDL

The information theoretic criteria for model or-
der selection address the following problem:

Given a set of N observations X = {x1, . . . , xN}
and a parameterized family of probability densities
f(X |Θ) (a family of models), select one model that
fits best the set of observations [10]. Akaike [2]
proposed the following criterion, defined by:

AIC = −2 log f(X |Θ̂) + 2k (2)

where Θ̂ is the maximum likelihood estimate of the
parameter vector Θ and k is the number of freely
adjustable parameters in Θ. The first term rep-
resents the log-likelihood of the maximum likeli-
hood estimator of the parameters of the model and
the second term assures that AIC becomes an un-
biased estimate of the mean Kullback-Leibler dis-
tance between the modeled and estimated densities
of f(X |Θ).

Further works of Schwartz (Bayesian informa-
tion criterion, BIC) and, independently, of Rissanen
(Minimum Description Length, MDL) [6]) yielded
the following criterion:

MDL = − log f(X |Θ̂) +
1

2
k log N (3)

In [10] both AIC and MDL criteria were adapted for
detection of the number of signals. This procedure
is recalled here in simplified form.

The log–likelihood term in (2) or (3) becomes the
ratio of the geometric mean to arithmetic mean of
a number of the smallest eigenvalues.

The number of free parameters in Θ̂ is obtained
as the number of the degrees of freedom of each of
the parameters. Finally, both criteria are given by
(for complex signals):

AIC(k) = −2 log
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MDL(k) = − log
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The number of signals is determined as the value
of k ∈ {0, 1, . . . , p − 1} which minimizes the value
of (4) or (5).

Although widely studied from the theoretical
point of view, statistical criteria hasn’t been found
to be very useful in practice [9].

D. Bayesian model selection – MInka’s Bayesian
model order Selection Criterion (MIBS)

This method also bases on eigenvalues of the data
covariance matrix [5], but uses the Bayesian frame-
work and Laplace method for approximation of in-
tegrals [1].

The PCA model assumes Gaussian distribution
of the sources (this model works reasonably well
also for non–Gaussian sources [5]) and the observa-
tion vector X was generated from a smaller sources’
vector s by linear transformation with additive
noise e.

X = Hs + m + e (6)

The probability of the model evidence q can be cal-
culated from the eigenspectrum of the data covari-
ance matrix.

p(X|q) = p(U)





q
∏

j=1

λj





−N/2

σ̂
−N(p−q)
ML

· (2π)(m+q)/2|Az |
−1/2N−q/2 (7)

where p(U) denotes a uniform prior over all eigen-
vector matrices, N – number of observations, σ̂ML

– estimate of the noise in the maximum–likelihood
sense, m = pq − q(q + 1), and

p(U) = 2−q

q
∏

j=1

Γ((p − j + 1)/2)π
−(p−i+1)

2 (8)

|Az | =

q
∏

i=1

p
∏

j=i+1

N(λ̂−1
j − λ̂−1

i )(λi − λj) (9)

where λl denotes an eigenvalue, λ̂l = λl for l ≤ q
and λ̂l = σ2

ML
, otherwise.

To find the signal subspace “latent dimension”
such value of q is chosen which maximizes the ap-
proximation of the model evidence p(X|q).

III. Time–frequency parametric spectral

estimation

As an example of application the time-frequency
representation, as proposed in [4], is shown. The
problem of harmonic retrieval is often based on the
following signal model:

x[n] =

K
∑

k=1

Akejωkn + z[n] (10)

After decomposition into signal and noise parts:

Rx = Rsignal + Rnoise =

K
∑

k=1

|Ak|
2
eke

∗T
k + σ2

0I

(11)

where ek =
[

1 ejωk ejωk2 . . . ejωk(M−1)
]

.
MUSIC [7] assumes that the correlation matrix may
be of any dimension M > K and bases on M − K
noise eigenfilters.

Ui(z) =
M−1
∑

m=0

ui[m]z−m; i = K + 1, . . . , M (12)

and

D(z) =

M
∑

i=K+1

[Ui(z)][U∗

i (1/z∗)] (13)

Every eigenfilter has M −1 roots, K roots are com-
mon for all eigenfilters. Using the property that all
signal zeros are the roots of (12), the equation (13)
can be transformed to:

D(z) = H1(z)H∗

1 (1/z∗)H2(z)H∗

2 (1/z∗) (14)

where c is a constant and H1(z) contains the signal
zeros whereas H2(z) contains the extraneous zeros
which lie inside the unit circle on the complex plane.
The root-MUSIC procedure uses the most straight-
forward way to find the roots of D(z) and identify
the frequencies of the signal components by using
the knowledge that all those roots lie on the unit
circle.

In order to investigate the time–varying signals
with the time varying signal is broken up into small
time segments (with the help of the temporal win-
dow function) and each segment is analysed.

IV. Investigations

The performance with regard to accuracy of the
estimation of the number of components is tested
using simulated signals with Gaussian noise. The
sampling frequency was set to 1000 Hz and each cal-
culation was repeated 1000 times for independent
realizations of the signal. First the estimation ac-
curacy1 was checked depending on the signal length
(two sinusoids 50 and 150 Hz with unit amplitude
and SNR 20 dB2). The figure 1 shows that accuracy
of MIBS strongly depends on the number of samples
and achieves only 68% accuracy for the window of
500 samples chosen for further investigations. Ex-
cellent performance of AIC should be noted as it
achieves over 90% for 20 samples only.

Figure 2 deals with the masking problem of the
weaker component by the stronger one. One com-
ponent with the basic frequency has the fixed am-
plitude and the second has it gradually decreasing.
Generally MDL offers best accuracy close to 100%
down to 0.08 with exception of the smallest rela-
tive amplitudes where MIBS achieves over 50% ac-
curacy for values as low as 0.04.

In figure 3 the results are presented which show
what is the lowest difference in frequency that still

1Accuracy is determined as a percentage of runs when a
signal parameter was estimated correctly.

2SNR [dB] = 10 log10
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allows to detect two separate components of the
same amplitude. AIC performs poorly and fails by
the values of 50 and 74 Hz (24 Hz of difference),
whereas MDL needs only 12 Hz difference to cor-
rectly estimate. As before, MIBS offers advantage
for the lowest values of difference.

Increasing number of sinusoids with the same am-
plitude was also estimated. AIC failed by four com-
ponents other methods by five (the frequencies were
50, 100, 150, 200, 250 Hz).

The Gaussian noise has little influence on accu-
racy as shown in figure 4. The highest immunity
shows MIBS with accuracy of almost 70% for SNR
as low as –5 dB, followed by MDL (100% for –2 dB)
and AIC (100% for 4 dB).

Fig. 1. Accuracy of the dimension estimation by AIC, MDL
and MIBS depending on the signal length.

Fig. 2. Accuracy of the dimension estimation by AIC, MDL
and MIBS depending on the relative amplitude of two sinu-
soidal components.

The switching of the condenser bank in the trans-
mission line was simulated using the EMTP soft-
ware with the simulation parameters as shown in
the Figure 5. The sampling frequency was 10 kHz
and the length of the analysis window was set to 100
samples (0.01 s). The A–phase current is shown in
the Figure 6. The first condenser bank was switched
on at the time t = 0.03 s and the second condenser

Fig. 3. Accuracy of the dimension estimation by AIC, MDL
and MIBS depending on the difference of frequencies of two
sinusoids with equal amplitude.

Fig. 4. Accuracy of the dimension estimation by AIC, MDL
and MIBS depending on the Signal–to–Noise Ratio.

bank at the time t = 0.09 s.
The number of components was determined on-

line using the AIC criterion (with limitation to
maximum of four components) for each analysed
time interval of 100 samples. To keep the picture
legible, in the Figure 7 the first two components
only are shown. Components were sorted accord-
ing to their frequency. In the Figure 8 the cor-
responding amplitudes (derived from components’
powers computed by the root–MUSIC procedure)
are shown. The first component correspond to the
fundamental harmonic of 50 Hz. With exception to
short intervals (around the switching points) where
the stationarity assumption is not satisfied, the re-
sults of estimation of frequency are reliable and cor-
respond precisely to the time waveform. The sec-
ond component has a transient, exponentially de-
caying character with frequency of 476 Hz after the
switching of the first condenser bank which changes
to 270 Hz after the second switching operation.
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Fig. 5. Scheme of the simulated transmission line system.
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Fig. 6. Waveform of the A–phase current during switching
of the condenser banks in the transmission line.
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VI. Conclusions

The application of statistical model order selec-
tion (in this case – estimation of the number of
sinusoidal components) allow to track on-line the
parameters of the signal. It can be also used as
one of the input values of the system of automatic
detection and classification.

In the paper the influence of the estimation ac-
curacy of the sample correlation matrix (depending
on the length of the signal), the influence of the
number of components and of their relative am-
plitudes on the accuracy of statistical estimation
of the number of components was presented. The
use of information–theoretic criterion like AIC, to-
gether with high–resolution parametric estimation
method, like MUSIC, allows precise on-line estima-
tion of the signal parameters by using the sliding
window approach in the case when the parameters
of the components are time–varying.
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